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Abstract— In this paper we provide two small-gain theorems
for impulsive systems. The first of them provides a construction
of an ISS-Lyapunov function for interconnections of impulsive
systems if ISS-Lyapunov functions for subsystems are given and
a small-gain condition holds. If, in addition, these given ISS-
Lyapunov functions are exponential then the second theorem
provides a construction of an exponential ISS-Lyapunov func-
tion for the interconnection if the gains are power functions.
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I. INTRODUCTION

Impulsive systems are systems which behave like contin-
uous systems for all times except for some given countable
set of impulse times at which the state of a system jumps.
The first monographs devoted entirely to impulsive systems
are [19], [14]. Recent developments in this field one can find,
in particular, in [9], [23].

Our aim is to study stability of impulsive systems with
respect to external inputs. One of the main concepts in
this theory is the notion of input-to-state stability (ISS),
introduced in [21]. For a survey see e.g. [20], [2].

Input-to-state stability of impulsive systems has been in-
vestigated in the papers [10], [5] (finite-dimensional systems)
and [1], [15], [22] (time-delay systems). The stability of
interconnected impulsive systems has been studied in [4].

If both discrete and continuous dynamics taken separately
from each other are ISS, then the impulsive system is ISS
w.r.t. all admissible impulse time sequences, see [10] and
[11], [12], where a small-gain theorem theorem for general
classes of control systems has been developed. However,
more interesting case is when either continuous or discrete
dynamics destabilizes the system. In this case in order to
achieve ISS of the system one has to impose restrictions on
the density of impulse times, which are called dwell-time
conditions.

In [5] the Lyapunov-type sufficient conditions for stability
of the impulsive system have been developed. For the case,
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when the impulsive system possesses an ISS-Lyapunov func-
tion (in general nonexponential), it was proved that ISS of the
system with respect to impulse time sequence is guaranteed
if it satisfies certain nonlinear fixed dwell-time condition.

Also in [5] it was proved that the impulsive system, which
has an exponential ISS Lyapunov function is uniform ISS for
impulse time sequences, satisfying the generalized average
dwell-time condition (gADT) condition. This theorem gener-
alizes [10, Theorem 1], where this result has been proved for
sequences, which satisfy more restrictive average dwell-time
condition.

In this paper we are going to prove a small-gain theorem,
which provides a construction of an ISS-Lyapunov function
for an interconnection in the case, when ISS-Lyapunov
functions for the subsystems are known, and the small-
gain condition holds. ISS of the whole network can be then
checked, using the sufficient condition, proved in [5]. Also
we prove, that if all subsystems possess exponential ISS
Lyapunov functions, and the gains are power functions, then
the exponential ISS Lyapunov function for the whole system
can be constructed. This generalizes [4, Theorem 4.2], where
this result for linear gains has been proved.

The structure of the paper is as follows. In Section II we
provide notation and main definitions. In Section III we recall
the Lyapunov type results for single impulsive systems. In
Section IV we investigate the ISS of interconnected systems
via small-gain theorems.

II. PRELIMINARIES

Let T = {t1, t2, t3, . . .} be a strictly increasing sequence of
impulse times without finite accumulation points. Consider
a system of the form{

ẋ(t) = f (x(t),u(t)), t ∈ [t0,∞)\T,
x(t) = g(x−(t),u−(t)), t ∈ T, (1)

where f ,g : Rn×Rm→ Rn.
The first equation of (1) describes the continuous dynamics

of the system and the second describes the jumps of a state
at the impulse times.

We assume that inputs belong to the class L∞([t0,∞),Rm)
of essentially bounded Lebesgue measurable functions, and
moreover, that left limits of u exist at all times (we denote
u−(t) = lim

s→t−0
u(s) for all t ≥ t0) and that inputs are right-

continuous. We endow this space with the supremum norm,
which we denote by ‖ · ‖∞.

We suppose that f is locally Lipschitz w.r.t. the first
argument uniformly w.r.t. the second in order to guarantee
existence and uniqueness of solutions of the problem (1).
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We assume throughout the paper that x≡ 0 is an equilib-
rium of the unforced system (1), that is f (0,0) = g(0,0) = 0.

From the assumptions on the inputs u it follows that x(·)
is absolutely continuous between the impulses and x−(t) =
lim

s→t−0
x(s) exists for all t from the domain of definition of

x(·).
Equations (1) together with the sequence of impulse times

T define an impulsive system.
The system (1) is not time-invariant, i.e. the equality

φ(t2, t1,x,u) = φ(t2 + s, t1 + s,x,u) does not hold for all
s ≥ −t1, where φ(t2, t1,x,u) denotes the state of the system
(1) at time t2 if its state at time t1 was x and input u was
applied. However, it holds

φ(t2, t1,x,u) = φs(t2 + s, t1 + s,x,u),

where φs has the same meaning as φ , but for a system (1)
with shifted impulse time sequence Ts := {t1+ s, t2+ s, t3+
s, . . .}.

This means that the trajectory of the system (1) with initial
time t0 and impulse time sequence T is equal to the trajectory
of (1) with zero initial time and impulse time sequence T−t0 .
Therefore we assume that t0 is some fixed moment of time
and will investigate the stability properties of the origin of
the system (1) w.r.t. this initial time.

We will use the following classes of functions

P := {γ : R+→ R+ | γ is continuous,
γ(0) = 0 and γ(r)> 0 for r > 0}

K := {γ ∈P | γ is strictly increasing}
K∞ := {γ ∈K | γ is unbounded}
L := {γ : R+→ R+ | γ is continuous and strictly

decreasing with lim
t→∞

γ(t) = 0}
K L := {β : R+×R+→ R+ | β is continuous,

β (·, t) ∈K , β (r, ·) ∈L , ∀t,r ≥ 0}

Denote the Euclidean norm in spaces Rk by | · | and N :=
{1,2,3, . . .}.

We are interested in a study of stability of the system
(1) w.r.t. external inputs. To this end we use the following
notion:

Definition 1: For a given sequence T of impulse times
we call system (1) input-to-state stable (ISS) if there exist
β ∈K L , γ ∈K∞, such that for all initial conditions x0, for
all inputs u, ∀t ≥ t0 it holds

|x(t)| ≤max{β (|x0|, t− t0),γ(‖u‖∞)}. (2)

The impulsive system (1) is uniformly ISS over a given set
S of admissible sequences of impulse times if it is ISS for
every sequence in S , with β and γ independent of the choice
of the sequence from the class S .

In the next section we are going to find the sufficient
conditions for an impulsive system (1) to be ISS.

III. ISS OF A SINGLE IMPULSIVE SYSTEM

For analysis of ISS of impulsive systems we exploit ISS-
Lyapunov functions.

Definition 2: A Lipschitz-continuous function V : Rn →
R+ is called an ISS-Lyapunov function for (1) if ∃ ψ1,ψ2 ∈
K∞, such that

ψ1(|x|)≤V (x)≤ ψ2(|x|), ∀x ∈ Rn (3)

holds and ∃χ ∈ K∞, α ∈P and continuous function ϕ :
R+ → R with ϕ(0) = 0 such that for almost all x ∈ Rn,
∀ξ ∈ Rm it holds

V (x)≥ χ(|ξ |)⇒
{

V̇ (x) = ∇V · f (x,ξ )≤−ϕ(V (x)),
V (g(x,ξ ))≤ α(V (x)). (4)

If in addition ϕ(s) = cs and α(s) = e−ds for some c,d ∈ R,
then V is called exponential ISS-Lyapunov function with rate
coefficients c,d.

Remark 1: Note that we do not assume that ϕ ∈P and
α < id. If both these conditions hold, then, according to
[10, Theorem 2] the system is strongly uniformly ISS. If
neither of them holds, then an existence of an ISS-Lyapunov
function does not imply ISS of the system w.r.t. any impulse
time sequence. In this paper we are interested mostly in the
case, when only one of these conditions hold, that is, either
continuous or discrete part of the system is ISS. We are going
to find conditions, which guarantee ISS of the impulsive
system w.r.t. certain classes of impulse time sequences.

Remark 2: Note that an ISS-Lyapunov function for an
impulsive system (1) does not depend on the sequence
of impulse times. Consequently in the case when either
continuous or discrete dynamics destabilizes the system, the
existence of ISS-Lyapunov function is not enough to prove
stability of the system (1). One needs to restrict the sets of
admissible impulse time sequences.

Our definition of ISS-Lyapunov function is given in an
implication form. The next proposition shows another way
to introduce an ISS Lyapunov function, which is frequently
used in the literature on hybrid systems, see e.g. [17]. We
will use it for the formulation of the small-gain theorem in
Section IV. This proposition is a counterpart of [13, Propo-
sition 2.2.19] where analogous result for hybrid systems has
been proved.

Recall that a function g : Rn×Rm→ Rn is called locally
bounded, if for all ρ > 0 there exists K > 0, so that
supx∈Rn:|x|≤ρ, u∈Rm:|u|≤ρ |g(x,u)| ≤ K.

Proposition 1: Let V : Rn→R+ be Lipschitz continuous.
Assume that there exist ψ1,ψ2 ∈ K∞, such that (3) holds
and there exist γ ∈ K∞, α ∈ P and continuous function
ϕ : R+→ R, ϕ(0) = 0 such that for almost all x ∈ Rn and
all ξ ∈ Rm it holds

V (x)≥ γ(|ξ |) ⇒ ∇V · f (x,ξ )≤−ϕ(V (x)) (5)

and ∀x ∈ Rn,ξ ∈ Rm it holds

V (g(x,ξ ))≤max{α(V (x)),γ(|ξ |)}. (6)

Then V is an ISS-Lyapunov function. If g is locally bounded,
then also the converse implication holds.

Proof: ”⇒” Pick any ρ ∈K∞ such that α(r) < ρ(r)
for all r > 0.
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Then for all x ∈ Rn and ξ ∈ Rm from (6) we have

V (g(x,ξ ))≤max{ρ(V (x)),γ(|ξ |)}.

Define χ := max{γ,ρ−1 ◦ γ} ∈K∞. For all x ∈ Rn and ξ ∈
Rm such that V (x)≥ χ(|ξ |) it follows ρ(V (x))≥ γ(|ξ |) and
hence

V (g(x,ξ ))≤ ρ(V (x)).

Since χ(r) ≥ γ(r) for all r > 0, it is clear, that (4) holds.
Thus, V is an ISS-Lyapunov function.

”⇐” Let g be locally bounded and let V be an ISS-
Lyapunov function for the system (1). Then ∃χ ∈K and
α ∈P such that for all x ∈ Rn and ξ ∈ Rm from V (x) >
χ(|ξ |) it follows V (g(x,ξ ))≤ α(V (x)).

Let V (x) ≤ χ(|ξ |). Then |x| ≤ ψ
−1
1 ◦ χ(|ξ |). De-

fine S(r) := {x ∈ Rn : |x| ≤ ψ
−1
1 ◦ χ(r)} and ω(r) :=

sup
|ξ |≤r, x∈S(r)

ψ2(|g(x,ξ )|). This supremum exists since g is

locally bounded. Clearly, ω is nondecreasing and ω(0) =
ψ2(|g(0,0)|) = 0. Pick any γ ∈K∞: γ ≥ max{ω,χ}. Then
for all x ∈ Rn and ξ ∈ Rm the inequality (6) holds. Clearly,
for all x : |x| ≥ γ(|ξ |) the implication (5) holds.

Similarly one can prove the following proposition (which
is not a consequence of Proposition 1):

Proposition 2: Let V : Rn→R+ be Lipschitz continuous.
Assume that there exist ψ1,ψ2 ∈ K∞, such that (3) holds
and there exist γ ∈K∞ and c,d ∈R such that for almost all
x ∈ Rn and for all ξ ∈ Rm it holds

V (x)≥ γ(|ξ |)⇒ ∇V · f (x,ξ )≤−cV (x)

and ∀x ∈ Rn,ξ ∈ Rm it holds

V (g(x,ξ ))≤max{e−dV (x),γ(|ξ |)}.

Then V is an exponential ISS-Lyapunov function (with the
rate coefficients c and d). If g is locally bounded, then also
the converse implication holds.

In [5] there have been proved two Lyapunov-type sufficient
conditions for the system (1) to be ISS. The first of them
provides a sufficient condition for the impulsive system (1),
which possesses an ISS-Lyapunov function to be ISS w.r.t.
certain impulse time sequences.

Define Sθ := {{ti}∞
1 ⊂ [t0,∞) : ti+1− ti ≥ θ , ∀i ∈ N}.

Theorem 3: Let V be an ISS-Lyapunov function for (1)
and let ϕ,α be as in the Definition 2 with ϕ ∈P . If for
some θ ,δ > 0 and all a > 0 it holds∫

α(a)

a

ds
ϕ(s)

≤ θ −δ , (7)

then (1) is ISS for all impulse time sequences T ∈ Sθ .
For the systems, which possess exponential ISS-Lyapunov

functions a stronger result is provided by the following
theorem.

For a given sequence of impulse times denote by N(t,s)
the number of jumps within time-span (s, t].

Theorem 4: Let V be an exponential ISS-Lyapunov func-
tion for (1) with corresponding coefficients c ∈ R, d 6= 0.
For arbitrary function h : R+→ (0,∞), for which there exists

g∈L : h(x)≤ g(x) for all x∈R+ consider the class S [h] of
impulse time-sequences, satisfying the generalized average
dwell-time (gADT) condition:

−dN(t,s)− c(t− s)≤ lnh(t− s), ∀t ≥ s≥ t0. (8)

Then the system (1) is uniformly ISS over S [h].
For a discussion of the relations between the fixed dwell-

time condition (7) and gADT condition (8) see [16, Section
3.2.2].

If an ISS-Lyapunov function has been already constructed,
then the above theorems provide us with the conditions,
which allow us to verify the ISS of impulsive system.
However, there exist no general method for construction of
ISS-Lyapunov functions.

In the next section we prove small-gain theorems, which
provide the construction of the ISS-Lyapunov function for
an interconnection of impulsive subsystems, for which ISS-
Lyapunov functions are given and the small-gain condition
holds.

IV. ISS OF INTERCONNECTED IMPULSIVE SYSTEMS

Let T = {t1, . . . , tk, . . .} be a sequence of impulse times for
all subsystems (we assume, that all systems jump at the same
time).

Consider the system consisting of n interconnected impul-
sive subsystems:

ẋi(t) = fi(x1(t), . . . ,xn(t),u(t)), t /∈ T,
xi(t) = gi(x−1 (t), . . . ,x

−
n (t),u

−(t)), t ∈ T,
i = 1,n,

(9)

where the state xi of the i-th subsystem is absolutely contin-
uous between impulses; u is a locally bounded, Lebesgue-
measurable input and x j, j 6= i can be interpreted as internal
inputs of the i-th subsystem.

Furthermore, fi : RN1 × . . .×RNn ×Rm → RNi and gi :
RN1 × . . .×RNn ×Rm → RNi , where we assume that the
fi are locally Lipschitz for all i = 1, . . . ,n. We continue to
assume that all signals (xi, i= 1, . . . ,n and inputs u) are right-
continuous and have left limits at all times.

We define N := N1 + . . .+ Nn, x := (xT
1 , . . . ,x

T
n )

T , f :=
( f T

1 , . . . , f T
n )T and g := (gT

1 , . . . , gT
n )

T such that the inter-
connected system (9) is of the form{

ẋ(t) = f (x(t),u(t)), t /∈ T ,
x(t) = g(x−(t),u−(t)), t ∈ T. (10)

Remark 3: Let us suppose for a while, that the assump-
tion, that impulse time sequence is the same for all subsys-
tems, is dropped, and consider the interconnections of the
following form:

ẋi(t) = fi(x1(t), . . . ,xn(t),u(t)), t /∈ Ti,
xi(t) = gi(x−1 (t), . . . ,x

−
n (t),u

−(t)), t ∈ Ti,
i = 1,n,

(11)

where Ti can be different for different i. In this case the
interconnected system cannot be rewritten in the form (10),
and thus (11) defines a more general class of systems than
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(1). For such systems the input-to-state stability theory is not
developed at the time.

According to the Proposition 1 for the i-th subsystem of
(9) the definition of an ISS-Lyapunov function can be written
as follows. A Lipschitz continuous function Vi : RNi →R+ is
an ISS-Lyapunov function for i-th subsystem of (9), if three
properties hold:

1) There exist functions ψi1,ψi2 ∈K∞, such that:

ψi1(|xi|)≤Vi(xi)≤ ψi2(|xi|), ∀xi ∈ RNi

2) There exist γi j,γi ∈K , j = 1, . . . ,n, γii := 0 and ϕi ∈
P , so that for almost all xi ∈ RNi , i = 1, . . . ,n, for all
ξ ∈ Rm from

Vi(xi)≥max{ n
max
j=1

γi j(Vj(x j)),γi(|ξ |)}, (12)

it follows

∇Vi · fi(x,ξ )≤−ϕi (Vi(xi(t))) . (13)

3) There exist αi ∈P , such that for gains γi j,γi ∈ K
defined above and for all x ∈RN and for all ξ ∈Rm it
holds

Vi(gi(x,ξ ))≤max{αi(Vi(xi)),
n

max
j=1

γi j(Vj(x j)),γi(|ξ |)}.
(14)

If ϕi(y) = ciy and αi(y) = e−diy for all y ∈ R+, then Vi is
an exponential ISS-Lyapunov function for the i-th subsystem
of (9) with rate coefficients ci,di ∈ R.

The internal Lyapunov gains γi j characterize the inter-
connection structure of subsystems. As we will see, the
question, whether the interconnection (9) is ISS, depends
on the properties of the gain operator Γ : Rn

+→ Rn
+ defined

by

Γ(s) :=
(

n
max
j=1

γ1 j(s j), . . . ,
n

max
j=1

γn j(s j)

)
, s ∈ Rn

+. (15)

To construct an ISS-Lyapunov function for the whole
interconnection we will use the notion of Ω-path (see [8],
[18]).

Definition 3: A function σ = (σ1, . . . ,σn)
T : Rn

+ → Rn
+,

where σi ∈K∞, i = 1, . . . ,n is called an Ω-path (with respect
to operator Γ), if it possesses the following properties:

1) σ
−1
i is locally Lipschitz continuous on (0,∞);

2) for every compact set P ⊂ (0,∞) there are finite
constants 0 < K1 < K2 such that for all points of
differentiability of σ

−1
i we have

0 < K1 ≤ (σ−1
i )′(r)≤ K2, ∀r ∈ P;

3)

Γ(σ(r))≤ σ(r), ∀r > 0. (16)
Remark 4: Note that usually in the definition of Ω-path

it is assumed that (16) holds with ”<” instead of ”≤”
[7]. However, this small weakening of requirements doesn’t
change the proofs of our small-gain theorems and provides
us with more flexibility.

We say that Γ satisfies the small-gain condition if the
following inequality holds

Γ(s) 6≥ s, ∀ s ∈ Rn
+\{0} . (17)

Now we prove a small-gain theorem for nonlinear im-
pulsive systems. The technique for treatment of the discrete
dynamics was adopted from [17] and [3].

Theorem 5: Consider the system (9). Let Vi be the ISS-
Lyapunov function for i-th subsystem of (9) with correspond-
ing gains γi j from (12)-(14). If the operator Γ defined by (15)
satisfies the small-gain condition (17), then an ISS-Lyapunov
function V for the whole system can be constructed as

V (x) := max
i
{σ−1

i (Vi(xi))}, (18)

where σ = (σ1, . . . ,σn)
T is an Ω-path.

Proof: Define the function γ by

γ(r) := max
i

σ
−1
i (γi(r)). (19)

In [6] it was proved, that for almost all x∈RN and all ξ ∈Rm

from V (x)≥ γ(|ξ |) it follows

d
dt

V (x)≤−ϕ(V (x)),

for

ϕ(r) :=
n

min
i=1

{(
σ
−1
i
)′
(σi(r))ϕi(σi(r))

}
. (20)

Function ϕ is positive definite, because σ
−1
i ∈K∞ and all

ϕi are positive definite functions.
Thus, implication (5) is verified and it remains to check

the estimation (6). With the help of inequality (14) we make
for all x ∈ RN and ξ ∈ Rm the following estimations

V (g(x,ξ )) = max
i
{σ−1

i (Vi(gi(x,ξ )))}

≤ max
i
{σ−1

i (max{αi(Vi(xi)),

n
max
j=1

γi j(Vj(x j)),γi(|ξ |)})}

= max{max
i
{σ−1

i ◦αi(Vi(xi))},

max
i, j 6=i
{σ−1

i ◦ γi j(Vj(x j))},max
i
{σ−1

i ◦ γi(|ξ |)}}

= max{max
i
{σ−1

i ◦αi ◦σi ◦σ
−1
i (Vi(xi))},

max
i, j 6=i
{σ−1

i ◦ γi j ◦σ j ◦σ
−1
j (Vj(x j))},

max
i
{σ−1

i ◦ γi(|ξ |)}}.

Define α̃ :=maxi{σ−1
i ◦αi ◦σi}. Since αi ∈P , then α̃ ∈P .

Pick any α∗ ∈K : α∗(r)≥ α̃(r), r ≥ 0. Then the following
estimate holds

max
i
{σ−1

i ◦αi ◦σi ◦σ
−1
i (Vi(xi))} ≤ α

∗(max
i
{σ−1

i (Vi(xi))})

= α
∗(V (x)).

Define also η := maxi, j 6=i{σ−1
i ◦ γi j ◦ σ j} and note that

according to (16)

η = max
i, j 6=i
{σ−1

i ◦ γi j ◦σ j}< max
i, j 6=i
{σ−1

i ◦σi}= id.
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We continue estimates of V (g(x,ξ )):

V (g(x,ξ )) ≤ max{α∗(V (x)),η(V (x)),γ(|ξ |)}
= max{α(V (x)),γ(|ξ |)},

where
α := max{α∗,η}. (21)

According to Proposition 1 the function V is an ISS-
Lyapunov function of the interconnection (9).

Remark 5: Small-gain theorem has been formulated for
Lyapunov functions in the form used in Proposition 1.
According to the Proposition 1 this formulation can be
transformed to the standard formulation, and from the proof
it is clear, that the functions α and ϕ remain the same after
the transformation. In order to find the classes of impulse
time-sequences, for which the system (10) is ISS, one should
use Theorem 3.

A. Small-gain theorem for exponential ISS-Lyapunov func-
tions

If an exponential ISS-Lyapunov function for a system (1)
is given, then the Theorem 4 provides us with the tight
estimates of the set of impulse time sequences, w.r.t. which
the system (1) is ISS. Unfortunately, even if all subsystems
are exponentially ISS, the ISS-Lyapunov function, designed
via small-gain approach, is not necessarily exponential.

But we may hope, that if ISS-Lyapunov functions for all
subsystems of (9) are exponential, then the expression (18) at
least for certain type of gains provides the exponential ISS-
Lyapunov function for the whole system. In this subsection
we are going to prove the small-gain theorem of this type.

Define the following class of power functions

P := { f : R+→ R+ : ∃a≥ 0, b > 0 : f (s) = asb ∀s ∈ R+}

Define also Q : Rn
+→ Rn

+ by

Q(x) := MAX{x,Γ(x),Γ2(x), . . . ,Γn−1(x)},

with Γn(x) = Γ ◦Γn−1(x), for all n ≥ 2. The function MAX
for all hi ∈ Rn, i = 1, . . . ,m is defined by

z = MAX{h1, . . . ,hm} ∈ Rn, zi := max{h1i, . . . ,hmi}.

Theorem 6: Let Vi be the eISS Lyapunov function for
the i-th subsystem of (9) with corresponding gains γi j,
i = 1, . . . ,n. Let also γi j ∈ P. Then one can construct the
exponential ISS-Lyapunov function V : RN → R+ for the
whole system (10) by (18) for certain Ω-path σ . In particular,
σcan be chosen by

σ(t) = Q(at),∀t ≥ 0, for some a ∈ int(Rn
+). (22)

Proof: Take Ω-path σ as in (22). According to the
Theorem 5 function V , defined by (18) is an ISS Lyapunov
function. We have only to prove, that it is the exponential
one.

For all f ,g ∈ P it follows f ◦g ∈ P, thus for all i it holds
that σi(t) = max{ f i

1(t), . . . , f i
ri
(t)}, where all f i

k ∈ P and ri is
finite.

Thus, for all i there exists a partition of R+ into sets Si
j,

j = 1, . . . ,ki (i.e. ∪ki
j=1Si

j = R+ and Si
j ∩ Si

s = /0, if j 6= s),
such that σ

−1
i (t) = ai jt pi j for t ∈ Si

j. This partition is always
finite, because all f i

j ∈ P, and such two functions intersect in
no more than one point, distinct from zero.

Note, that σ is indeed an Ω-path, since the first two
properties of Definition 3 are satisfied and Γ(σ(t)) ≤ σ(t)
for all t ≥ 0 according to [12, Proposition 2.7 and Remark
2.8].

Let x∈Mi and Vi(xi)∈ Si
j. Then the condition (13) implies

d
dt

V (x) =
d
dt
(σ−1

i (Vi(xi))) =
d
ds

(ai jspi j)|s=Vi(xi)
d
dt
(Vi(xi))

≤ −ciai j pi j(Vi(xi))
pi j ≤−cV (x)

where c = mini, j{ci pi j}.
We have to prove, that the function α from (21) can be

estimated from above by linear function. We choose α∗ :=
α̃ = maxi{σ−1

i ◦αi ◦σi}.
For any t ≥ 0 it holds that σ

−1
i ◦αi ◦σi(t) = ci = const

since αi are linear and σ
−1
i are piecewise power functions.

This implies that for some constant k it holds that α∗(t)≤ kt
for all t ≥ 0.

Since η < id, it is clear that one can take α :=
max{k,1} Id. Recalling Proposition 2 we obtain the claim
of the theorem.

Remark 6: The obtained exponential ISS-Lyapunov func-
tion can be transformed to the implication form with the help
of Proposition 2. Then Theorem 4 can be used in order to
characterize the set of impulse time sequences for which the
system (10) is ISS.

Let us demonstrate how one can analyze interconnected
impulsive systems on a simple example. Let T = {tk} be
a sequence of impulse times. Consider two interconnected
nonlinear impulsive systems

ẋ1(t) = − x1(t)+ x2
2(t), t /∈ T,

x1(t) = e−1x−1 (t), t ∈ T

and

ẋ2(t) = − x2(t)+3
√
|x1(t)|, t /∈ T,

x2(t) = e−1x−2 (t), t ∈ T.

Both subsystems are uniformly ISS (even strongly uni-
formly ISS, see [10]) for all impulse time sequences, since
continuous and discrete dynamics stabilize the subsystems
and one can easily construct exponential ISS Lyapunov
functions with positive rate coefficients for both subsystems
and the corresponding gains χ12, χ21. But for arbitrary gains,
which allow to prove the ISS of the subsystems w.r.t. all
time-sequences the small-gain condition will fail, since the
continuous dynamics of the interconnected system is not
stable. Therefore in order to apply the small-gain theorem
we have to choose other gains, which make it possible to
prove ISS of the interconnected system for certain classes of
impulse time sequences.

6835



Take the following exponential ISS-Lyapunov functions
and Lyapunov gains for subsystems

V1(x1) = |x1|, γ12(r) = 1
a r2,

V2(x2) = |x2|, γ21(r) = 1
b

√
r,

where a,b > 0. We have the estimates

|x1| ≥ γ12(|x2|)⇒ V̇1(x1)≤ (a−1)V1(x1),

|x2| ≥ γ21(|x1|)⇒ V̇2(x2)≤ (3b−1)V2(x2).

The small-gain condition

γ12 ◦ γ21(r) =
1

ab2 r < r, ∀r > 0 (23)

is satisfied, if it holds

h(a,b) := ab2 > 1. (24)

Take arbitrary constant c such that 1
b < 1

c <
√

a. Then Ω-
path can be chosen as

σ1(r) = r, σ2(r) =
1
c
√

r, ∀r ≥ 0.

Then
σ
−1
2 (r) = c2r2, ∀r ≥ 0.

In this case an ISS-Lyapunov function for the interconnec-
tion, constructed by small-gain design, is given by

V (x) = max{|x1|,c2|x2|2}, where
1
b
<

1
c
<
√

a

and we have the estimate

V (g(x)) =V (e−1 · x)≤ e−1V (x). (25)

Thus, d = −1 for the interconnection. The estimates of the
continuous dynamics for V are as follows: For |x1| ≥ c2x2

2 >
1
a x2

2 = γ12(|x2|) it holds

d
dt

V (x) =
d
dt
|x1| ≤ (a−1)|x1|= (a−1)V (x),

and |x1| ≤ c2x2
2 < γ

−1
21 (|x2|) implies

d
dt

V (x) =
d
dt

(
c2x2

2
)

=
d
dt

(
c2V2(x2)

2)
≤ 2(3b−1)c2|x2|2 = 2(3b−1)V (x).

Overall, for all x we have:
d
dt

V (x)≤max{(a−1),2(3b−1)}V (x). (26)

Function h, defined by (24), is increasing w.r.t. both
arguments since a,b > 0, hence in order to minimize ε :=
max{(a−1),2(3b−1)}, we have to choose (a−1) = 2(3b−
1). Then, from (23) we obtain the inequality

(1+2(3b−1))b2 > 1.

Thus, the best choice for b is b ≈ 0.612 and V is an
exponential ISS-Lyapunov function for the interconnection
with coefficients with d = −1 and c = 2 · (3 · 0.612− 1) =
1.672.

The ISS-Lyapunov function for the interconnection is
constructed, and one can apply Theorem 4 in order to
obtain the classes of impulse time sequences for which the
interconnection is GAS.
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