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Abstract We prove small-gain type criteria of exponential stability for positive linear discrete-
time systems in ordered Banach spaces that have a normal and generating positive cone. Such
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considerably strengthened if the cone has non-empty interior or if the operator inducing the
discrete-time system is quasi-compact.
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1. INTRODUCTION

Positive systems frequently occur in the modeling, anal-
ysis, and control of dynamical systems, for instance, in
chemical engineering, compartmental systems, and ecolog-
ical systems (Farina and Rinaldi (2000)). Besides being
interesting in their own right, positive systems have been
instrumental in establishing stability properties of control
systems, which are not positive per se. In particular, within
the small-gain approach (Dashkovskiy et al. (2007, 2010)),
the stability criteria for large-scale interconnected systems
are given in terms of “small-gain” and “no-increase” con-
ditions. For linear systems, they are equivalent to expo-
nential stability of the underlying discrete-time system,
see (Rüffer, 2007, Lemma 2.0.1). A decisive tool for the
proof of such criteria is the celebrated Perron–Frobenius
theorem.

For infinite-dimensional systems set in the realm of ordered
Banach spaces, the situation is more complex. Stability
of positive and non-positive linear operators and semi-
groups has already been studied for many decades, as is
documented, for instance, in the monographs van Neer-
ven (1996); Emel’yanov (2007); Eisner (2010). Yet, many
stability criteria that turned out to be useful guidelines in
the finite-dimensional path from the linear to the nonlinear
case – in particular, so-called small-gain theorems and non-
increasing conditions – have only been partially explored
in the infinite-dimensional setting so far (although see
(Krasnoselskiy, 1964, Theorem 3.13 on p. 120 and Theo-
rem 4.6 on p. 130), where no-increase conditions have been
used for the study of fixed points of monotone operators).
This has several reasons. On the one hand, the Krein–
Rutman theorem, which is a (partial) infinite-dimensional
extension of the Perron–Frobenius theorem, requires the
operator under consideration to be quasi-compact, which
is a rather strong assumption. On the other hand, many

finite-dimensional stability notions exhibit – due to the
compactness of the closed unit ball – some intrinsic uni-
formity, which is essential to characterize properties such
as exponential stability. The lack of this uniformity in
the infinite-dimensional setting breaks most known finite-
dimensional criteria.

Contribution. In this paper, we study discrete-time sys-
tems, playing a prominent role in the modeling, analy-
sis, control, and numerics of dynamical systems (Agarwal
(2000); LaSalle (2012)). In Section 4, we introduce several
novel stability properties, most notably the uniform small-
gain condition, and characterize the exponential stability
of positive linear discrete-time systems in terms of such
properties (Theorem 4). Our assumptions on the ordered
Banach space are not particularly restrictive; we merely
assume that the cone is normal and generating, which
is satisfied for many important classes of spaces. Some,
though not all, of the equivalences in Theorem 4 have been
shown in Mironchenko et al. (2021a) to hold even in the
nonlinear case; these results are related to the input-to-
state stability of control systems with inputs and to so-
called small-gain theorems.

In Section 5, we devote special attention to ordered Banach
spaces whose cone has non-empty interior. Subeigenvectors
of operators inducing discrete-time positive exponentially
stable systems are a key to the construction of Lyapunov
functions for networks of stable systems, see Dashkovskiy
et al. (2010) for the case of finite networks. Our results
in Section 5 pave the way to extending these results to
infinite networks; some results of this type have already
been put to use (Kawan et al. (2021)).

In Section 6, we treat systems given by quasi-compact op-
erators. By using the Krein–Rutman theorem for these op-
erators, we show that the assumption of quasi-compactness
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allows us to extend most of the finite-dimensional results
to the infinite-dimensional setting.

Nonlinear versions of small-gain type conditions studied in
this paper have been applied for the analysis of nonlinear
systems in Mironchenko et al. (2021a). Some of the results
in Section 5 have been extended to the case of homoge-
neous and subadditive operators in Mironchenko et al.
(2021b) and applied for the construction of ISS Lyapunov
functions for infinite networks of input-to-state stable sys-
tems with homogeneous and subadditive gain operators.
Nevertheless, in the nonlinear case, many problems remain
open.

This is an abridged conference version of the paper Glück
and Mironchenko (2021). Here we state three results char-
acterizing the exponential stability of discrete-time sys-
tems. Due to the page limits, we give a proof of only
one of these results. For all other proofs and detailed
discussions, we refer to Glück and Mironchenko (2021).
The journal version also provides an overview of other
known characterizations of exponential stability. This sup-
plies our results with some classical context but also makes
it possible to treat the paper Glück and Mironchenko
(2021) as a survey. The continuous-time counterparts of
some of the results of this work are proved in Glück and
Mironchenko (2022).

Notation. We use the conventions N = {1, 2, 3, . . . } and
Z+ = {0, 1, 2, . . . }.
If X is a Banach space, we denote the space of bounded
linear operators on X by L(X), and we denote the dual
space – i.e., the space of bounded linear functionals on X –
by X ′. For x′ ∈ X ′ and x ∈ X we use the common notation
〈x′, x〉 := x′(x). The identity operator on a Banach space
will be denoted by id (if the space is clear from the
context).

If the underlying scalar field of the Banach space X is
complex, we denote the spectrum an operator T ∈ L(X)
by σ(T ). The spectral radius of T is denoted by

r(T ) := sup{|λ| : λ ∈ σ(T )} ∈ [0,∞).

If λ ∈ C is located in the complement of the spectrum
(i.e., in the so-called resolvent set of T ), the operator
(λ id−T )−1 is called the resolvent of T at λ.

For bounded linear operators on real Banach spaces, spec-
tral properties are defined by means of a complexification.

2. SETTING THE STAGE: ORDERED BANACH
SPACES AND POSITIVE OPERATORS

In this section, we recall some background information on
ordered Banach spaces that will be needed throughout the
article.

Ordered Banach spaces. By an ordered Banach space
we mean a pair (X,X+) where X is a real Banach space,
and X+ ⊆ X is a non-empty closed set such that the set

αX+ + βX+ := {αx+ βy : x, y ∈ X+}
is a subset of X+. For all scalars α, β ≥ 0 and such that
X+∩(−X+) = {0}. The set X+ is called the positive cone
in X.

The positive cone of an ordered Banach space (X,X+)
induces a partial order ≤ on X which is given by x ≤ y if

and only if y − x ∈ X+. In particular, x ≥ 0 if and only if
x ∈ X+. The partial order ≤ is compatible with addition
and with multiplication by scalars α ≥ 0.

Generating and normal cones. Let (X,X+) be an
ordered Banach space. The cone X+ is called total (or
spatial) if the vector subspace X+ −X+ = {x− y : x, y ∈
X+} of X is dense in X. The cone is called generating
(or the space X is called directed) if we even have X+ −
X+ = X. In other words, the cone is generating if and
only if each vector x ∈ X can be decomposed as x = y− z
for two vectors y, z ∈ X+.

Moreover, if the cone X+ is generating, then there exists
a number M > 0 with the following property: for each
x ∈ X there exist y, z ∈ X+ such that

x = y − z and ‖y‖ , ‖z‖ ≤M ‖x‖ ; (1)

see for instance (Aliprantis and Tourky, 2007, Theo-
rem 2.37(1) and (3)). The cone X+ is called normal if
there exists a number C > 0 such that we have

‖x‖ ≤ C ‖y‖ whenever 0 ≤ x ≤ y (2)

in X. The cone is normal if and only if there exists an
equivalent norm ‖ · ‖′ on X which is monotone in the sense
that ‖x‖′ ≤ ‖y‖′ whenever 0 ≤ x ≤ y; see for instance
(Aliprantis and Tourky, 2007, Theorem 2.38(1) and (2)).

Finally, for each set S ⊂ X denote by int (S) the topological
interior of S. If int (X+) 6= ∅, then we say that the cone
X+ has a non-empty interior. Note that a cone with non-
empty interior is automatically generating.

The distance to the cone. For a subset S and a vector
x in a Banach space X, we denote by

dist(x, S) := inf {‖x− y‖ : y ∈ S}
the distance from x to S. If (X,X+) is an ordered Banach
space, we will need the distance of points to the positive
cone X+. Due to the specific properties of cones, the
distance function dist( · , X+) is quite nicely behaved; in
particular, it is not difficult to see that we have for all
x, y ∈ X and all α ∈ [0,∞)

dist(x+ y,X+) ≤ dist(x,X+) + dist(y,X+),

and dist(αx,X+) = α dist(x,X+).

Examples of ordered Banach spaces. As explained
next, classical sequence and function spaces constitute
several important classes of ordered Banach spaces.

Example 2.1. Let X = `p := {x ∈ RN : ‖x‖`p < ∞}
for p ∈ [1,∞], with the norms x = (xn)n∈N 7→ ‖x‖`p :=(∑∞

n=1 |xn|p
)1/p

for p < ∞ and x 7→ ‖x‖`∞ :=

sup∞n=1 |xn|. We endow each `p-space with the cone

`+p := {(xn)n∈Z+ ∈ `p : xn ≥ 0 for all n ∈ N}.
Then (`p, `

+
p ) is an ordered Banach space, and the cone

`+p is generating and normal. If p =∞, then the cone has

non-empty interior, whereas int (`+p ) = ∅ for p ∈ [1,∞).

Example 2.2. (Spaces of continuous functions). If Ω is a
topological space, then the space Cb(Ω) of all real-valued
and bounded continuous functions, endowed with the
supremum norm and the cone of all those functions in
Cb(Ω) that are ≥ 0 everywhere on Ω, is an ordered Banach
space with generating and normal cone. Moreover, the
cone in this space has non-empty interior.
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Similarly, if L is a locally compact Hausdorff space and
C0(L) denotes that closed subspace of Cb(L) consisting
of functions that vanish at infinity, then C0(L), with the
norm and cone inherited from Cb(L), is an ordered Banach
space with normal and generating cone. The interior of the
cone in C0(L) is non-empty if and only if L is compact (in
which case we have C0(L) = Cb(L) = C(L), where C(L)
denote the space of all continuous real-valued functions on
L).

Positive operators. Let (X,X+) and (Y, Y +) be ordered
Banach spaces. A linear mapping A : X → Y is called
positive, which we denote as A ≥ 0, if AX+ ⊆ Y +. A
linear mapping A is positive if and only if it respects the
order relation (i.e. Ax1 ≤ Ax2 whenever x1 ≤ x2).

We are particularly interested in bounded linear operators.
Interestingly though, this assumption is often redundant:
if the cone X+ is generating, then every positive linear
operator A : X → Y is automatically bounded (Aliprantis
and Tourky, 2007, Theorem 2.32).

Duality of ordered Banach spaces. Let (X,X+) be an
ordered Banach space. The subset

(X ′)+ := {x′ ∈ X ′ : 〈x′, x〉 ≥ 0 for all x ∈ X+}
of the dual space X ′ is called the dual wedge of X+. The
elements of (X ′)+ are called the positive functionals on X.

The dual wedge is also closed (even weak∗-closed), con-
vex and invariant with respect to multiplication by non-
negative scalars. The dual wedge (X ′)+ is a cone – i.e., its
intersection with −(X ′)+ is {0} – if and only if the cone
X+ is total in X.

3. STABILITY FOR LINEAR OPERATORS

For a Banach space X and an operator T ∈ L(X), consider
the discrete-time system induced by T ,

x(k + 1) = Tx(k) for all k ∈ Z+. (3)

We are interested in whether the solutions to this system
converge uniformly to 0 as k →∞; this is made precise in
the following definition.

Definition 3.1. For a Banach space X and an operator
T ∈ L(X), the system (3) is called

(a) uniformly asymptotically stable, if there is a sequence
of real numbers 0 ≤ ak → 0 such that∥∥T kx

∥∥ ≤ ak ‖x‖ for all x ∈ X, k ∈ Z+;

(b) uniformly exponentially stable (or uniformly power
stable), if there exist real numbers a ∈ [0, 1) and
M > 0 such that∥∥T kx

∥∥ ≤Mak ‖x‖ for all x ∈ X and all k ∈ Z+;

(c) uniformly weakly attractive if, for each r > 0 and each
ε > 0, there is a time τ with the following property:
for each x ∈ X of norm ‖x‖ ≤ r there is k ≤ τ such
that

∥∥T kx
∥∥ ≤ ε.

A well-known result in the stability theory of discrete-
time systems (3) is the following (see, e.g., (Przyluski,
1988, Lemma 2.1 and Theorem 2.2), (Mironchenko, 2017,
Proposition 5.1)):

Proposition 3.1. Let X be a Banach space and T ∈ L(X).
The following assertions are equivalent:

(i) We have r(T ) < 1.
(ii) The system (3) is uniformly asymptotically stable.

(iii) The system (3) is uniformly exponentially stable.
(iv) The system (3) is uniformly weakly attractive.

4. GENERAL STABILITY CRITERIA FOR POSITIVE
SYSTEMS

From now on we assume that T is a positive linear operator
on an ordered Banach space. Positivity of the operator
T does not simplify the criteria for uniform exponen-
tial stability considered in Proposition 3.1. On the other
hand, positivity allows to show diverse characterizations of
small-gain type, as shown in our main result stated next:

Theorem 4.1. Let (X,X+) be an ordered Banach space
with generating and normal cone and let T ∈ L(X) be
positive. Then the following assertions are equivalent:

(i) Uniform exponential stability: The system (3) satis-
fies the equivalent criteria of Proposition 3.1, i.e., we
have r(T ) < 1.

(ii) Positivity of the resolvent at 1: The operator id−T :
X → X is bijective and its inverse (id−T )−1 is
positive. 1

(iii) Monotone bounded invertibility property: There ex-
ists a number c ≥ 0 such that

(id−T )x ≤ y ⇒ ‖x‖ ≤ c ‖y‖
holds for all x, y ∈ X+.

(iv) Uniform small-gain condition: There is a number
η > 0 such that

dist
(
(T − id)x,X+

)
≥ η ‖x‖

for each x ∈ X+.
(v) Robust small-gain condition: There exists a number

ε > 0 such that

(T + P )x 6≥ x (4)

for every 0 6= x ∈ X+ and for every positive operator
P ∈ L(X) of norm ‖P‖ ≤ ε.

(vi) Rank-1 robust small-gain condition: There exists a
number ε > 0 such that

(T + P )x 6≥ x
for every 0 6= x ∈ X+ and for every positive operator
P ∈ L(X) of rank 1 and of norm ‖P‖ ≤ ε.

Proof.“(i) ⇒ (ii)” If the r(T ) < 1, then id−T is clearly
invertible, and it follows from the Neumann series repre-
sentation of the resolvent that

(id−T )−1 =

∞∑
k=0

T k ≥ 0;

the inequality at the end follows by applying the operator
series to vectors x ∈ X+ and using that X+ is closed.

“(ii) ⇒ (iii)” Let C ∈ [0,∞) be the normality constant
from inequality (2). If x, y ∈ X+ and (id−T )x ≤ y we
obtain from the positivity of the resolvent (id−T )−1 that
x ≤ (id−T )−1y, and hence

‖x‖ ≤ C
∥∥(id−T )−1

∥∥ ‖y‖ .
1 Note that as id−T is invertible and bounded, then (id−T )−1 is
closed, and since id−T is surjective, (id−T )−1 is bounded by a
closed graph theorem. Thus, 1 ∈ ρ(T ) and (id−T )−1 is indeed a
resolvent.
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This proves the monotone bounded invertibility property
with c = C

∥∥(id−T )−1
∥∥.

“(iii)⇒ (iv)” Let c > 0 be as in (iii). Since the cone X+ is
assumed to be generating, we can find a constant M > 0
as in the decomposition property (1).

Now fix x ∈ X+ and let ε > 0 be arbitrary; we are going
to show that

dist
(
(T − id)x,X+

)
≥ 1

cM
‖x‖ − ε. (5)

For convenience, denote a := (T − id)x. By the definition
of the distance, we can find a vector z ∈ X+ such that
‖a− z‖ ≤ dist(a,X+) + ε, and we set y := a− z. Now we
decompose the vector y as

y = u− v,
where u, v are in X+ and satisfy the norm estimate

‖u‖ , ‖v‖ ≤M ‖y‖ ≤M dist(a,X+) +Mε.

For the vector (id−T )x we have the estimate

(id−T )x = −a = −y − z = v − u− z ≤ v,
so the monotone bounded invertibility property from (iii)
implies that

‖x‖ ≤ c ‖v‖ ≤ cM
(

dist(a,X+) + ε
)
.

So we have indeed shown the claimed inequality (5).
Since ε was arbitrary, this gives us the uniform small-gain
condition with η = 1

cM .

“(iv) ⇒ (v)” Choose ε = η/2, where η is the number
from (iv). Now, let x be a non-zero element of X+ and
let P ∈ L(X) be a positive linear operator of norm at
most ε. We have to show that Tx + Px 6≥ x, and to this
end we may – and will, in order to simplify the notation –
assume that x has norm 1.

For each vector z ∈ X+, we know from the uniform small-
gain condition that Tx− x has distance at least η from z.
Since ‖Px‖ ≤ η/2, it follows that Tx + Px − x still has
distance at least η/2 from z, so

dist(Tx+ Px− x,X+) ≥ η

2
> 0.

In particular, Tx + Px − x is not in the cone, so Tx +
Px 6≥ x.

“(v) ⇒ (vi)” This implication is obvious.

“(vi) ⇒ (i)” Let ε > 0 be as in (vi). We argue by
contraposition: assume that r(T ) ≥ 1.

By (Glück and Mironchenko, 2021, Lemma 3.5), r(T )
is an approximate eigenvalue of T and there exists a
corresponding approximate eigenvector (xn)n∈N in X+;
more precisely, this means that each vector xn has norm
1 and that

(T − r(T ) id)xn → 0.

Since the cone in our space is generating, we can choose a
number M ∈ [0,∞) as in the decomposition property (1).
Since the dual cone (X ′)+ in X ′ is generating, too (due
to the normality of X+, see (Krasnosel’skii et al., 1989,
Theorem 4.5)), there also exists a constant M ′ ∈ [0,∞)
with the same property for the dual cone (X ′)+.

For each index n we can decompose the vector (T −
r(T ) id)xn as

(T − r(T ) id)xn = yn − zn,
where yn, zn are vectors in X+ of norm at most
M ‖(T − r(T ) id)xn‖. If we choose a sufficiently large num-
ber n0 ∈ N, we thus have M ′ ‖zn0‖ ≤ ε.
We now choose a functional z′ ∈ (X ′)+ of norm at most
M ′ such that 〈z′, xn0

〉 ≥ 1; such a functional z′ exists in
view of (Glück and Mironchenko, 2021, Lemma 3.6). The
rank-1 operator P ∈ L(X) that is defined by the formula

Pv = 〈z′, v〉zn0 for each v ∈ X,
is positive and has norm

‖P‖ = sup
‖v‖=1

‖〈z′, v〉zn0
‖ = sup

‖v‖=1

|〈z′, v〉| ‖zn0
‖

= ‖z′‖ ‖zn0
‖ ≤M ′ ‖zn0

‖ ≤ ε.
On the other hand, we have

Txn0 + Pxn0 − xn0 ≥ (T − r(T ) id)xn0 + Pxn0

= yn0
− zn0

+ 〈z′, xn0
〉zn0

≥ 0

since 〈z′, xn0〉 ≥ 1. Hence, we have Tx + Px ≥ x for
x := xn0 . �

Remarks 4.1. (a) The terminology “small-gain condition”
stems from the study of interconnected systems in
systems and control theory. In this context, the gain
describes the response of the system on the applied
input. As an example, consider two systems Σ1 and
Σ2. If γ12 > 0 is the gain describing the influence of the
system Σ2 on the system Σ1, and γ21 > 0 is the gain
describing the influence of the system Σ1 on the Σ2,
then the condition γ12 ·γ21 < 1 guarantees in a proper
context the stability of the feedback interconnection
of Σ1 and Σ2 and is referred to as a “small-gain
condition”. At the same time, the condition γ12 ·γ21 <
1 is equivalent to(

0 γ12
γ21 0

)(
s1
s2

)
6≥
(
s1
s2

)
for all (s1, s2) ∈ R2

+\{0}

(for the implication “⇐”, just take s1 := 1, s2 :=
γ21). This explains the use of the term “small-gain
condition” for conditions like (4).

(b) In assertion (v) of the theorem, it does not suffice
to consider only a single non-zero operator P as a
perturbation. As a counterexample, let p ∈ [1,∞] and
let T : `p → `p denote the right shift operator given
by

T : (x1, x2, . . . ) 7→ (0, x1, x2, . . . ).

Moreover, let P = 1
2 id : `p → `p denote half the

identity operator. Then it is easy to check that (T +
P )x 6≥ x for each non-zero vector x ≥ 0. Yet, T has
spectral radius 1.

A related observation is made in Example 6.2.
(c) We note that all the equivalent conditions in Theo-

rem 4.1 can also be formulated in terms of the dual
operator T ′, since the dual operator is positive, too,
and since r(T ′) = r(T ).

5. CONES WITH NON-EMPTY INTERIOR

If (X,X+) is an ordered Banach space and the cone
X+ has non-empty interior, we will write x � y (or,
synonymously, y � x) if y − x ∈ int (X+).
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If the cone X+ in an ordered Banach space contains
an interior point, further powerful characterizations for
stability of positive systems can be obtained:

Theorem 5.1. Let (X,X+) be an ordered Banach space
with normal cone and suppose that the cone has non-
empty interior. For every positive operator T ∈ L(X), the
following assertions are equivalent:

(i) Uniform exponential stability: The system (3) satis-
fies the equivalent criteria of Proposition 3.1, i.e., we
have r(T ) < 1.

(ii) Dual small-gain condition: For each 0 6= x′ ∈ (X ′)+

we have

T ′x′ 6≥ x′.
(iii) Interior point small-gain condition, first version: For

every interior point z of X+ there is a number η > 0
such that

Tx 6≥ x− η ‖x‖ z for all x ∈ X+ \ {0}.
(iv) Interior point small-gain condition, second version:

There exists an interior point z of X+ and a number
η > 0 such that

Tx 6≥ x− η ‖x‖ z for all x ∈ X+ \ {0}.
(v) Strong decreasing property, first version: There exists

an interior point z of X+ such that Tz � z.
(vi) Strong decreasing property, second version: There

exists an interior point z of X+ and λ ∈ (0, 1) such
that

Tz ≤ λz. (6)

(vii) Strong stability: T kx→ 0 as k →∞ for all x ∈ X.
(viii) Weak attractivity in the cone: For each x ∈ X+ we

have infk≥0
∥∥T kx

∥∥ = 0.

It is particularly worthwhile to point out that condition (ii)
in Theorem 5.1 is formulated in a non-uniform way (as
opposed to the uniform small-gain condition in Theo-
rem 4.1(iv)). This is because, on spaces whose cone is
normal and has non-empty interior, the spectral radius
of a positive operator is always an eigenvalue of the dual
operator with a positive eigenvector.

Remark 5.1. In some applications, in particular in Lyapunov-
based small-gain theorems Mironchenko et al. (2021b), it
is of interest to explicitly compute the number λ and the
corresponding vector z as in (6), also called a point of strict
decay. We refer to Mironchenko et al. (2021b) for explicit
formulas for the computations of such points.

6. THE QUASI-COMPACT CASE

The characterisation of stability becomes considerably
easier when the operator T under consideration is compact
or, more generally quasi-compact. Here we call a bounded
linear operator T on a Banach space X quasi-compact if
there exists an integer n0 ∈ N and a compact operator
K on X such that ‖Tn0 −K‖ < 1 (alternatively, if there
exists n1 and a compact operator K such that r(Tn1 −
K) < 1). This is equivalent to saying that the equivalence
class of T in the Calkin algebra L(X)/K(X) – where
K(X) denotes the ideal of compact operators on X – has
spectral radius strictly less than 1. The latter spectral
radius is known to coincide with the so-called essential
spectral radius ress(T ) of T . Hence, T is quasi-compact

if and only if ress(T ) < 1, and the latter condition means
that on the unit circle, and outside of it, all spectral values
of T (if there exist any at all) are poles of the resolvent
( · −T )−1 with a finite-dimensional spectral space. Clearly,
every compact operator and every power compact operator
is quasi-compact.

Our next theorem gives additional stability criteria for
positive linear operators in case they are quasi-compact.
In contrast to Theorem 4.1 we do not need the cone to be
normal now, and moreover, it suffices if the cone is total
rather than generating. In case the cone is normal and gen-
erating, though, the following criteria are complemented
by those in Theorem 4.1, of course.

Theorem 6.1. Let (X,X+) be an ordered Banach space
with total cone and let T ∈ L(X) be positive. If T is quasi-
compact, then the following assertions are equivalent:

(i) Uniform exponential stability: The system (3) satis-
fies the equivalent criteria of Proposition 3.1, i.e., we
have r(T ) < 1.

(ii) Positivity of the resolvent at 1: The operator id−T :
X → X is bijective and (id−T )−1 is positive.

(iii) All sub-fixed vectors of T are positive: If x ∈ X
satisfies

Tx ≤ x,
then x ≥ 0.

(iv) Small-gain condition: For each 0 6= x ∈ X+ we have

Tx 6≥ x.
(v) Attractivity on the cone: For each x ∈ X+ we have

T kx→ 0 as k →∞.
(vi) Weak attractivity on the cone: For each x ∈ X+ we

have infk≥0
∥∥T kx

∥∥ = 0.

For finite-dimensional discrete-time systems the equiva-
lence “(i) ⇔ (iv)” of Theorem 6.1 and the equivalence
“(i) ⇔ (vi)” of Theorem 5.1 can be found in (Rüffer,
2007, Lemma 2.0.1) and (Rüffer, 2010, Lemma 1.1). In
the finite-dimensional continuous-time case, an analogue
of “(i)⇔(iv)” can be found in (Stern, 1982, Theorem 1.4).

Without the assumption ress(T ) < 1, none of the condi-
tions (iii) or (iv) in Theorem 6.1 is sufficient to ensure that
r(T ) < 1. Here are simple counterexamples:

Example 6.1. Let X denote the ordered Banach space
Cb([0,+∞)) of bounded continuous functions with point-
wise order (compare Example 2.2), and let T : X → X be
given for each f ∈ X by

(Tf)(ω) = (1− e−ω)f(ω) for all ω ∈ [0,+∞).

Then T is positive, has spectrum [0, 1] and hence spectral
radius 1; but T satisfies condition (iii), as well as the
property (T (x))(s) < x(s) for all x ∈ X+ and s ≥ 0,
which is a stronger property than the small-gain condition
(iv) in Theorem 6.1.

The theorem is not applicable since the essential spectral
radius of T is equal to 1. Also note that Tx 6� x for all
x ∈ X+.

Example 6.2. Consider the ordered Banach space X :=
`∞, ordered by its usual cone (see Example 2.1). The cone
X+ is normal and has non-empty interior. We consider the
system

x(k + 1) = 2Rx(k), k ∈ Z+,
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where R is the right shift on X, i.e., R acts on x =
(x0, x1, x2, . . .) ∈ `∞ as Rx := (0, x0, x1, x2, . . .). Clearly,
R is a positive operator in L(X).

Consider an arbitrary strictly positive diagonal operator
D ∈ L(X), defined for x := (xi)i∈Z+

∈ X by Dx :=
(dixi)i∈Z+

, where (di)i∈Z+
is a sequence of a real numbers

that satisfy 0 < di ≤ M for a fixed constant M > 0 and
all indices i ∈ Z+.

Let x = (x1, x2, . . .) ∈ X+ \ {0} and let i be the index of
the first non-zero component of x (which is well-defined
and finite as x ∈ X+ and x 6= 0). Then the components of
2R(I + D)x with indices j = 0, . . . , i are equal to 0. This
shows that

2R(I +D)x 6≥ x for all x ∈ X+ \ {0},
which implies so-called strong small-gain condition for the
operator 2R used in, e.g., (Dashkovskiy et al., 2010, p.
11), Dashkovskiy et al. (2019), Mironchenko et al. (2021a);
in particular, this implies the small-gain condition for
T := 2R in Theorem 6.1(iv).

The strong small-gain condition says that there are pos-
itive perturbations of the operator, under which the op-
erator still satisfies the small-gain condition in Theo-
rem 6.1(iv). In this way, it resembles the robust small-gain
condition in Theorem 4.1(v). However, note that while in
the robust small-gain condition, the operator is being dis-
turbed by arbitrary additive small enough perturbations,
in the strong small-gain condition above, the operator
is disturbed by multiplicative perturbations of a specific
form.

However, R is not quasicompact, and thus Theorem 6.1 is
not applicable. In fact, R is an isometry as ‖Rx‖ = ‖x‖
for each x ∈ X. Thus, also

∥∥(2R)kx
∥∥ = 2k ‖x‖ → ∞

as k → ∞ provided that x 6= 0. This also shows that
the robust small-gain condition is much stronger than the
strong small-gain condition.

Finally, note (see, e.g., (Hundertmark et al., 2013, Exam-

ple B.7)) that σ(2R) = B(0, 2), where B(0, 2) is the open
ball of radius 2 with the center at 0 in the complex plane;
at the same time the point spectrum of 2R is empty (which
already implies that the claim of Krein–Rutman theorem
does not hold for 2R).
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Dashkovskiy, S., Rüffer, B., and Wirth, F. (2007). An ISS
small gain theorem for general networks. Mathematics
of Control, Signals, and Systems, 19(2), 93–122.
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