
Remarks on input-to-state stability and non-coercive Lyapunov functions

Birgit Jacob, Andrii Mironchenko, Jonathan R. Partington and Fabian Wirth

Abstract— We consider an abstract class of infinite-
dimensional dynamical systems with inputs. For this class the
significance of noncoercive Lyapunov functions is analyzed. It
is shown that the existence of such Lyapunov functions implies
integral input-to-integral state stability. Assuming further reg-
ularity it is possible to conclude input-to-state stability. For a
particular class of linear systems with unbounded admissible
input operators, explicit constructions of noncoercive Lyapunov
functions are provided. The theory is applied to a heat equation
with Dirichlet boundary conditions.

I. INTRODUCTION

It is well-known that the existence of an ISS Lyapunov
function implies ISS. However, the construction of ISS
Lyapunov functions for infinite-dimensional systems is a
challenging task, especially in the nonlinear case. Already
for undisturbed linear systems over Hilbert spaces, ”natural”
Lyapunov function candidates constructed via solutions of
Lyapunov equations are of the form V (x) := 〈Px,x〉, where
〈·, ·〉 is a scalar product in X and P is a self-adjoint, bounded
linear, positive operator the spectrum of which may contain
0. In this case V is not coercive and satisfies only the weaker
property that V (x)> 0 for x 6= 0. Hence the question arises,
whether such ”non-coercive” Lyapunov functions can be
used to conclude that a given system is ISS. A thorough study
of a similar question related to characterizations of uniform
global asymptotic stability has recently been performed in
[1].

In [2, Section III.B] it was shown for a class of semilin-
ear equations in Banach spaces with Lipschitz continuous
nonlinearities that the existence of a non-coercive Lyapunov
function implies ISS provided the flow of the system has
some continuity properties with respect to states and inputs
at the origin and the finite-time reachability sets of the system
are bounded. However, this class of systems does not include
many important systems such as linear control systems with
admissible inputs operators, which are crucially important
for the study of partial differential equations with boundary
inputs.
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In this paper we extend the results from [2, Section
III.B] to a broader class of systems, which includes at least
some important classes of boundary control systems. The
characterizations of ISS developed in [2] will play a central
role in these developments.

It is insightful to define another ISS-like property which
we call integral-to-integral ISS. Its finite-dimensional coun-
terpart has been studied in [3] and it was shown that integral-
to-integral ISS is equivalent to ISS for systems of ordinary
differential equations. Further relations of ISS and integral-
to-integral ISS have been developed in [4], [5] and other
works.

We start by defining a general class of control systems
in Section II. This class covers a wide range of infinite-
dimensional systems. For this class several stability concepts
are defined which relate to the characterization of ISS, in
particular to the characterization with the help of noncoercive
Lyapunov functions. In Section III we show in Theorem 3.6
that integral-to-integral ISS implies ISS for a broad class
of infinite-dimensional systems provided the flow of the
system has some continuity properties w.r.t. states and inputs
at the origin and the finite-time reachability sets of the
system are bounded. The proof of this fact is performed
in 3 steps. The first one is to show that integral-to-integral
ISS implies a so-called uniform limit property. This result
has been already obtained in [2, Section III.B]. The second
(technically harder) step, is to show that integral-to-integral
ISS implies local stability of a control system provided the
flow of the system is continuous w.r.t. state and inputs at the
origin. This is done in Proposition 3.5. The third and final
step in the proof of Theorem 3.6 is the application of the
main result in [2].

In Section IV we derive a constructive converse ISS
Lyapunov theorem for certain classes of linear systems with
admissible input operators. In particular, our results can be
applied for a broad class of subnormal operators, as discussed
in Section V-B.

It is well-known that the classic heat equation with Dirich-
let boundary inputs is ISS, which has been verified by
means of several different methods: [6], [7], [8]. However,
no constructions for ISS Lyapunov functions have been
proposed. In Section V we show that using the constructions
developed in Proposition 4.1 one can construct a non-
coercive ISS Lyapunov function for this system. It is still
an open question, whether a coercive ISS Lyapunov function
for a heat equation with the Dirichlet boundary input exists
(note, that for the system with Neumann boundary input a
coercive ISS Lyapunov function can be constructed, see [9]).

Notation: We use the following notation. The nonnegative



reals are R+ := [0,∞). The open ball of radius r around
0 in X is denoted by Br := {x ∈ X : ‖x‖X < r}. Similarly,
Br,U := {u ∈U : ‖u‖U < r}. By lim we denote the limit
superior. For any normed linear space X , for any S ⊂ X we
denote the closure of S by S.

For the formulation of stability properties the following
classes of comparison functions are useful:

K := {γ : R+→ R+ | γ is continuous, strictly
increasing and γ(0) = 0} ,

K∞ := {γ ∈K | γ is unbounded} ,
L := {γ : R+→ R+ | γ is continuous and strictly

decreasing with lim
t→∞

γ(t) = 0},
K L := {β : R+×R+→ R+ | β is continuous,

β (·, t) ∈K , β (r, ·) ∈L , ∀t ≥ 0, ∀r > 0} .

II. PRELIMINARIES

We begin by defining (time-invariant) forward complete
control systems evolving on a Banach space X .

Definition 2.1: Let (X ,‖·‖X ), (U,‖·‖U ) be Banach spaces
and U ⊂ { f : R+ → U} be a normed vector space which
satisfies the following two axioms:

Axiom of shift invariance: For all u ∈U and all τ ≥ 0 we
have u(·+ τ) ∈U with ‖u‖U ≥ ‖u(·+ τ)‖U .

Axiom of concatenation: For all u1,u2 ∈ U and for all
t > 0 the concatenation of u1 and u2 at time t

u(τ) :=

{
u1(τ), if τ ∈ [0, t],
u2(τ− t), otherwise,

(II.1)

belongs to U . Assume φ : R+×X×U → X .
The triple Σ = (X ,U ,φ) is called a forward complete

control system, if the following properties hold:
(Σ1) Identity property: for every (x,u) ∈ X×U it holds that

φ(0,x,u) = x.
(Σ2) Causality: for every (t,x,u) ∈ R+×X ×U , for every

ũ ∈ U with u(s) = ũ(s) for all s ∈ [0, t] it holds that
φ(t,x,u) = φ(t,x, ũ).

(Σ3) Continuity: for each (x,u) ∈ X × U the map t 7→
φ(t,x,u) is continuous.

(Σ4) Cocycle property: for all t,h≥ 0, for all x ∈ X , u ∈U
we have φ(h,φ(t,x,u),u(t + ·)) = φ(t +h,x,u).

The space X ist called the state space, U the input space
and φ the transition map.
This class of systems encompasses control systems generated
by ordinary differential equations (ODEs), switched systems,
time-delay systems, evolution partial differential equations
(PDEs), abstract differential equations in Banach spaces and
many others.

Remark 2.2: Note however, that not all important systems
are covered by our definitions. In particular, the input space
C(R+,U) of continuous U-valued functions does not satisfy
the axiom of concatenation. This, however, should not be a
big restriction, since already piecewise continuous and Lp in-
puts, which are used in control theory much more frequently
than continuous ones, satisfy the axiom of concatenation.

Some authors consider more general concepts, in which
the systems fail to satisfy a cocycle property, see e.g. [10].

We single out two particular cases which will be of
interest.

Example 2.3: Let A be the generator of a strongly contin-
uous semigroup (T (t))t≥0 of bounded linear operators on X
and let f : X×U → X . Consider the system

ẋ(t) = Ax(t)+ f (x(t),u(t)), u(t) ∈U, (II.2)

where x(0) ∈ X . We study mild solutions of (II.2), i.e.
solutions x : [0,τ]→ X of the integral equation

x(t) = T (t)x(0)+
∫ t

0
T (t− s) f (x(s),u(s))ds, (II.3)

belonging to the space of continuous functions C([0,τ],X)
for some τ > 0.

For system (II.2), we use the following assumption con-
cerning the nonlinearity f :

(i) f : X ×U → X is Lipschitz continuous on bounded
subsets of X , uniformly with respect to the second
argument, i.e. for all C > 0, there exists a L f (C) > 0,
such that for all x,y ∈ BC and for all v ∈U , it holds
that

‖ f (x,v)− f (y,v)‖X ≤ L f (C)‖x− y‖X . (II.4)

(ii) f (x, ·) is continuous for all x ∈ X and f (0,0) = 0.
Let U = PC(R+,U). Then our assumptions on f ensure

that mild solutions of initial value problems of the form (II.2)
exist and are unique, according to [11, Proposition 4.3.3]. For
system (II.2) forward completeness is a further assumption.
If these mild solutions exist on [0,∞) for every x(0)∈ X and
u ∈ PC(R+,U), then (X ,PC(R+,U),φ), defines a forward
complete control system, where φ(t,x(0),u) denotes the mild
solution at time t.

Example 2.4: (Linear systems with admissible control op-
erators) We consider linear systems of the form

ẋ(t) = Ax(t)+Bu(t), x(0) ∈ X , t ≥ 0, (II.5)

where A is the generator of a C0-semigroup (T (t))t≥0 on a
Banach space X and B ∈ L(U,X−1) for some Banach space
U . Here X−1 is the completion of X with respect to the
norm ‖x‖X−1 = ‖(β −A)−1x‖X for some β in the resolvent
set ρ(A) of A. The semigroup (T (t))t≥0 extends uniquely
to a C0-semigroup (T−1(t))t≥0 on X−1 whose generator A−1
is an extension of A, see e.g. [12]. Thus we may consider
Equation (II.5) on the Banach space X−1. For every x0 ∈ X
and every u ∈ L1

loc([0,∞),U), the function x : [0,∞)→ X−1,

x(t) := T (t)x0 +
∫ t

0
T−1(t− s)Bu(s)ds, t ≥ 0,

is called mild solution of Equation (II.5). The operator
B ∈ L(U,X−1) is called an q-admissible control operator for
(T (t))t≥0, where 1≤ q≤ ∞, if∫ t

0
T−1(t− s)Bu(s)ds ∈ X

for every t ≥ 0 and u ∈ Lq([0,∞),U).



If B is ∞-admissible and for every initial condition x0 ∈ X
and every input function u ∈ L∞([0,∞),U) the mild solution
x : [0,∞)→X is continuous, then (X ,L∞([0,∞),U),φ), where

φ(t,x0,u) := T (t)x0 +
∫ t

0
T−1(t− s)Bu(s)ds,

defines a forward-complete control system as defined in
Definition 2.1.

We note that, ∞-admissibility and continuity of all mild
solutions x : [0,∞)→ X , where x0 ∈ X and u ∈ L∞([0,∞),U)
is implied by each of the following conditions:
• B is q-admissible for some q ∈ [1,∞) [6],
• B is ∞-admissible, dimU < ∞, X is a Hilbert space and

A generates an analytic semigroup which is similar to a
contraction semigroup [13].

Within this article different stability concepts of forward
complete control systems are needed.

Definition 2.5: Consider a forward complete control sys-
tem Σ = (X ,U ,φ).

1) We call 0 ∈ X an equilibrium point (of the undisturbed
system) if φ(t,0,0) = 0 for all t ≥ 0.

2) We say Σ has the CEP property, if 0 is an equilibrium
and for every ε > 0 and for any h > 0 there exists a
δ = δ (ε,h)> 0, so that

t ∈ [0,h], ‖x‖X ≤ δ , ‖u‖U ≤ δ ⇒ ‖φ(t,x,u)‖X ≤ ε.(II.6)

3) We say that Σ has bounded reachability sets (BRS), if
for any C > 0 and any τ > 0 it holds that

sup
{
‖φ(t,x,u)‖X : ‖x‖X ≤C, ‖u‖U ≤C, t ∈ [0,τ]

}
<∞.

4) System Σ is called uniformly locally stable (ULS), if
there exist σ ∈K∞, γ ∈K∞∪{0} and r > 0 such that
for all x ∈ Br and all u ∈ Br,U :

‖φ(t,x,u)‖X ≤ σ(‖x‖X )+ γ(‖u‖U ) ∀t ≥ 0. (II.7)

5) We say that Σ has the uniform limit property (ULIM),
if there exists γ ∈K ∪{0} so that for every ε > 0 and
for every r > 0 there exists a τ = τ(ε,r) such that for
all x with ‖x‖X ≤ r and all u ∈U there is a t ≤ τ such
that

‖φ(t,x,u)‖X ≤ ε + γ(‖u‖U ). (II.8)

6) System Σ is called (uniformly) input-to-state stable
(ISS), if there exist β ∈ K L and γ ∈ K such that
for all x ∈ X , u ∈U and t ≥ 0 it holds that

‖φ(t,x,u)‖X ≤ β (‖x‖X , t)+ γ(‖u‖U ). (II.9)

7) We call Σ integral-to-integral ISS if there are α ∈K
and ψ ∈K∞, σ ∈K∞ so that for all x ∈ X , u ∈U and
t ≥ 0 it holds that∫ t

0
α(‖φ(s,x,u)‖X )ds≤ ψ(‖x‖X )

+
∫ t

0
σ(‖u(s+ ·)‖U )ds. (II.10)

Example 2.6: (Linear systems with admissible control op-
erators) We continue with Example 2.4, that is, we con-
sider again Equation (II.5) and assume that A generates
a C0-semigroup, B ∈ L(U,X−1) is ∞-admissible and for
every initial condition x0 ∈ X and every input function u ∈
L∞([0,∞),U) the mild solution x : [0,∞)→ X is continuous.
These assumption guarantee that (X ,L∞([0,∞),U),φ), where

φ(t,x0,u) := T (t)x0 +
∫ t

0
T−1(t− s)Bu(s)ds,

defines a forward-complete control system. The system has
the following properties

1) 0 ∈ X an equilibrium point due to the linearity of the
system,

2) (X ,L∞([0,∞),U),φ) has the CEP property, and bounded
reachability sets (BRS) [14],

3) If (T (t))t≥0 is exponentially stable, then
(X ,L∞([0,∞),U),φ) has the uniform limit property
(ULIM) [14], is uniformly locally stable (ULS) [14]
and input-to-state stable (ISS) [6],

4) (T (t))t≥0 is exponentially stable if and only if
(X ,L∞([0,∞),U),φ) is ISS [14].

5) If (X ,L∞([0,∞),U),φ) is integral-to-integral ISS, then
(X ,L∞([0,∞),U),φ) is ISS [6].

Remark 2.7: To the best of the knowledge of the authors it
is unknown, whether or not the converse statement to item 5)
of Example 2.6 holds for every linear system (II.5).

III. NON-COERCIVE LYAPUNOV THEOREM

Lyapunov functions are a powerful tool for the investi-
gation of ISS. Let x ∈ X and V be a real-valued function
defined in a neighborhood of x. The (right-hand upper) Dini
derivative of V at x corresponding to the input u along the
trajectories of Σ is defined by

V̇u(x) = lim
t→+0

1
t

(
V (φ(t,x,u))−V (x)

)
. (III.1)

Definition 3.1: A continuous function V : X → R+ is
called a non-coercive ISS Lyapunov function for a system
Σ = (X ,U ,φ), if there exist ψ2,α ∈K∞ and σ ∈K such
that

0 <V (x)≤ ψ2(‖x‖X ), ∀x ∈ X (III.2)

and the Dini derivative of V along the trajectories of Σ

satisfies
V̇u(x)≤−α(‖x‖X )+σ(‖u‖U ) (III.3)

for all x ∈ X and u ∈U .
Moreover, if (III.3) holds just for u = 0, we call V a (non-

coercive) Lyapunov function for the undisturbed system Σ. If
additionally there is ψ1 ∈K∞ so that the following estimate
holds:

ψ1(‖x‖X )≤V (x)≤ ψ2(‖x‖X ), ∀x ∈ X , (III.4)

then V is called a coercive ISS Lyapunov function for Σ.
The next proposition shows that integral-to-integral ISS

property naturally arises in the theory of ISS Lyapunov
functions:



Proposition 3.2: Let Σ=(X ,U ,φ) be a forward complete
control system. Assume that there exists a (noncoercive)x
ISS Lyapunov function for Σ. Then Σ is integral-to-integral
ISS.

Proof: Assume that V is an ISS Lyapunov function for
Σ with corresponding ψ2,α,σ . Integrating (III.3) from 0 to
t, we obtain using [1, Lemma 3.4]:

V (φ(t,x,u))−V (x)

≤−
∫ t

0
α(‖φ(s,x,u)‖X )ds+

∫ t

0
σ(‖u(·+ s)‖U )ds.

This immediately implies that∫ t

0
α(‖φ(s,x,u)‖X )ds

≤V (x)−V (φ(t,x,u))+
∫ t

0
σ(‖u(·+ s)‖U )ds

≤ ψ2(‖x‖X )+
∫ t

0
σ(‖u(·+ s)‖U )ds. (III.5)

This shows integral-to-integral ISS of Σ.
In [3, Theorem 1] it was shown that for ODE systems

with Lipschitz continuous nonlinearities the notions of ISS
and integral-to-integral ISS are equivalent. Next we show that
integral-to-integral ISS implies ISS for a class of forward-
complete control systems satisfying the CEP and BRS prop-
erties. In order to prove this, we are going to use the
following characterization of ISS, shown in [2]:

Theorem 3.3: Let Σ = (X ,U ,φ) be a forward complete
control system. The following statements are equivalent:
(i) Σ is ISS.

(ii) Σ is ULIM, ULS, and BRS.
In [2, Proposition 8] it was shown (with slightly different

formulation, but the same proof) that
Proposition 3.4: Let Σ=(X ,U ,φ) be a forward complete

control system. If Σ is integral-to-integral ISS, then Σ is
ULIM.

Next we provide a sufficient condition for the ULS prop-
erty.

Proposition 3.5: Let Σ=(X ,U ,φ) be a forward complete
control system satisfying the CEP property. If Σ is integral-
to-integral ISS, then Σ is ULS.

Proof: Let Σ be integral-to-integral ISS with the cor-
responding α,ψ,σ as in Definition 7.

Seeking a contradiction, assume that Σ is not ULS. Then
there exist an ε > 0 and sequences {xk}k∈N in X , {uk}k∈N
in U , and {tk}k∈N ⊂R+ such that xk→ 0 as k→∞, uk→ 0
as k→ ∞ and

‖φ(tk,xk,uk)‖X = ε ∀k ≥ 1.

Since Σ is CEP, for the above ε there is a δ1 = δ1(ε,1) so
that

‖x‖X ,‖u‖U ≤ δ1, t ∈ [0,1] ⇒ ‖φ(t,x,u)‖X < ε. (III.6)

Define for k ∈ N the following time sequence:

t1
k := sup{t ∈ [0, tk] : ‖φ(t,xk,uk)‖X ≤ δ1},

if the supremum is taken over a nonempty set, and set t1
k := 0

otherwise.
Again as Σ is CEP, for the above δ1 there is a δ2 > 0 so

that

‖x‖X ,‖u‖U ≤ δ2, t ∈ [0,1] ⇒ ‖φ(t,x,u)‖X < δ1. (III.7)

Without loss of generality we assume that δ2 is chosen small
enough so that

α(δ1)> ψ(δ2). (III.8)

We now define

t2
k := sup{t ∈ [0, tk] : ‖φ(t,xk,uk)‖X ≤ δ2},

if the supremum is taken over a nonempty set, and set t2
k := 0

otherwise.
Since uk→ 0 and xk→ 0 as k→∞, there is K > 0 so that

‖uk‖U ≤ δ2 and ‖xk‖X ≤ δ2 for k ≥ K.
From now on, we always assume that k ≥ K.
Using (III.6), (III.7) and the cocycle property, it is not hard

to show that for k≥ K it must hold that tk ≥ 2, as otherwise
we arrive at a contradiction to ‖φ(tk,xk,uk)‖X = ε .

Assume that tk− t1
k < 1. This implies (since tk ≥ 2), that

t1
k > 0. By the cocycle property we have

‖φ(tk,xk,uk)‖X = ‖φ(tk− t1
k ,φ(t

1
k ,xk,uk),uk(·+ t1

k )‖X .

The axiom of shift invariance justifies the inequalities

‖uk(·+ t1
k )‖U ≤ ‖uk‖U ≤ δ2 ≤ δ1.

Since ‖φ(t1
k ,xk,uk)‖X = δ1, and tk−t1

k < 1, we have by (III.6)
that ‖φ(tk,xk,uk)‖X < ε , a contradiction. Hence tk− t1

k ≥ 1
for all k ≥ K.

Analogously, we obtain that t1
k − t2

k ≥ 1 and tk− t2
k ≥ 2.

Define

x2
k := φ(t2

k ,xk,uk), u2
k := uk(·+ t2

k )

and

x1
k := φ(t1

k ,xk,uk), u1
k := uk(·+ t1

k ).

Due to the axiom of shift invariance u1
k ,u

2
k ∈U and

‖u1
k‖U ≤ ‖u2

k‖U ≤ ‖uk‖U ≤ δ2.

Also by the definition of t2
k we have ‖x2

k‖X = δ2.
Applying (II.10), and estimating the integral on the right

hand side of (II.10), we obtain for t := tk− t2
k that

∫ tk−t2
k

0
α(‖φ(s,x2

k ,u
2
k)‖X )ds≤ ψ(‖x2

k‖X )+(tk− t2
k )σ(‖u2

k‖U )

≤ ψ(δ2)+(tk− t2
k )σ(‖uk‖U ).

(III.9)



On the other hand, changing the integration variable and
using the cocycle property we obtain that∫ tk−t2

k

0
α(‖φ(s,x2

k ,u
2
k)‖X )ds

=
∫ t1

k−t2
k

0
α(‖φ(s,x2

k ,u
2
k)‖X )ds+

∫ tk−t2
k

t1
k−t2

k

α(‖φ(s,x2
k ,u

2
k)‖X )ds

=
∫ t1

k−t2
k

0
α(‖φ(s,x2

k ,u
2
k)‖X )ds

+
∫ tk−t1

k

0
α(‖φ(s+ t1

k − t2
k ,x

2
k ,u

2
k)‖X )ds

=
∫ t1

k−t2
k

0
α(‖φ(s,x2

k ,u
2
k)‖X )ds+

∫ tk−t1
k

0
α(‖φ(s,x1

k ,u
1
k)‖X )ds.

By definition of t2
k and t1

k we have that

‖φ(s,x2
k ,u

2
k)‖X ≥ δ2, s ∈ [t2

k , tk]

and
‖φ(s,x1

k ,u
1
k)‖X ≥ δ1, s ∈ [t1

k , tk].

Continuing the above estimates and using that tk−t1
k ≥ 1 and

α(δ1)> α(δ2), we arrive at∫ tk−t2
k

0
α(‖φ(s,x2

k ,u
2
k)‖X )ds≥ (t1

k − t2
k )α(δ2)+(tk− t1

k )α(δ1)

≥ (tk− t2
k −1)α(δ2)+α(δ1).

Since tk− t2
k ≥ 2 and in view of (III.8), we derive∫ tk−t2

k

0
α(‖φ(s,x2

k ,u
2
k)‖X )ds >

tk− t2
k

2
α(δ2)+ψ(δ2).(III.10)

Combining inequalities (III.9) and (III.10), we obtain

tk− t2
k

2
α(δ2)< (tk− t2

k )σ(‖uk‖U ).

This leads to
1
2

α(δ2)< σ(‖uk‖U ), k ≥ K.

Finally, since limk→∞ ‖uk‖U = 0, letting k→ ∞ we come to
a contradiction. This shows that Σ is ULS.

Now we combine the derived results to state a relationship
between ISS and integral-to-integral ISS.

Theorem 3.6: Let Σ be a forward complete control system,
which is CEP and BRS. If Σ is integral-to-integral ISS, then
Σ is ISS.

Proof: Propositions 3.4 and 3.5 imply that Σ is ULIM
and ULS. Since Σ is assumed to be BRS, Theorem 3.3 shows
that Σ is ISS.

We may now state our main result on noncoercive ISS
Lyapunov functions.

Theorem 3.7: Let Σ be a forward complete control system,
which is CEP and BRS. If there exists a (noncoercive) ISS
Lyapunov function for Σ, then Σ is ISS.

Proof: Follows from a combination of Proposition 3.2
and Theorem 3.6.

Remark 3.8: Note that forward complete ODE systems
with locally Lipschitz nonlinearities are BRS (see [15, Propo-
sition 5.1]) and CEP. Hence for this special class of systems

we recover the result of Sontag that integral-to-integral ISS
implies ISS (which is a part of [3, Theorem 1]).

One of the requirements in Theorem 3.6 is that the CEP
property holds. If this property is not available, we can still
infer input-to-state practical stability of Σ, using the main
result in [16]. The notion of input-to-state practical stability,
a relaxation of the ISS concept has been proposed in [17].
This concept is very useful for control under quantization
errors [18], [19], sample-data control [20] to name a few
examples.

Definition 3.9: A control system Σ = (X ,U ,φ) is called
(uniformly) input-to-state practically stable (ISpS), if there
exist β ∈K L , γ ∈K∞ and c > 0 such that for all x ∈ X ,
u ∈U and t ≥ 0 the following holds:

‖φ(t,x,u)‖X ≤ β (‖x‖X , t)+ γ(‖u‖U )+ c. (III.11)
Theorem 3.10: Let Σ be a forward complete control sys-

tem, which is BRS. If Σ is integral-to-integral ISS, then Σ is
ISpS.

Proof: Proposition 3.4 implies that Σ is ULIM. Since
Σ is also BRS, [16, Theorem III.1] shows that Σ is ISpS.

IV. LYAPUNOV FUNCTIONS FOR LINEAR SYSTEMS WITH
ADMISSIBLE OPERATORS

In this section we return to systems of the form (II.5),
which we call Σ(A,B) for short. We show how non-coercive
ISS Lyapunov functions can be constructed for systems
Σ(A,B) with an admissible input operator B provided the
operator A has some additional properties.

Here we generally assume that X is a Hilbert space and
that the input space is given by U := L∞([0,∞),U).

Our main result in this section is a constructive converse
ISS Lyapunov theorem for certain classes of linear systems
with admissible input operators.

Proposition 4.1: Let A be the generator of a C0-semigroup
(T (t))t≥0 on a Hilbert space X and let B ∈ L(U,X−1) and
assume that the system Σ(A,B) is ISS.

Further, assume that D(A)⊆ D(A∗) and the inequality

Re〈A∗A−1x,x〉X +δ‖x‖2
X ≥ 0 (IV.1)

holds for some δ < 1 and every x ∈ X , and Re〈Ax,x〉X < 0
for every x ∈ D(A)\{0}.

Then
V (x) :=−Re〈A−1x,x〉X (IV.2)

is an ISS Lyapunov function satisfying

V̇u(x)≤−(1−δ − ε)‖x0‖2
X

+

(
(‖A∗A−1‖L(X)+1)2‖A−1

−1B‖2

4ε
+‖A−1

−1B‖κ(0)

)
‖u‖2

∞

for ε ∈ (0,1−δ ), x0 ∈ X and u∈ L∞([0,∞),U). Here κ(0) =
limt↘0 κ(t), where κ(t)> 0 satisfies∥∥∥∥∫ t

0
T−1(t− s)Bu(s)ds

∥∥∥∥
X
≤ κ(t)‖u‖∞, u ∈ L∞([0, t),U).

Proof:
Since Σ is ISS, A generates an exponentially stable semi-

group, which implies (see e.g. [21, Proposition 5.2.4]) that



0 ∈ ρ(A) and so A−1 ∈ L(X). Thus, V (x) ≤ ‖A−1‖L(X)‖x‖2
X

for any x ∈ X . Moreover, for any x ∈ X\{0} there is y ∈
D(A)\{0} so that x = Ay. Then by the assumptions of the
proposition it holds that

V (x) =−Re〈Ay,y〉> 0.

Thus, property (III.2) is satisfied. It remains to show the
dissipation inequality (III.3) for V .

For x0 ∈ X and u ∈ L∞([0,∞),U) we have

V (φ(t,x0,u))−V (x0) (IV.3)

=Re〈A−1x0,x0〉X

−Re
〈

A−1
(

T (t)x0 +
∫ t

0
T−1(t− s)Bu(s)ds

)
,

T (t)x0 +
∫ t

0
T−1(t− s)Bu(s)ds

〉
X

=Re〈A−1x0,x0〉X −Re〈A−1T (t)x0,x0〉X
+Re〈A−1T (t)x0,x0〉X −Re〈A−1T (t)x0,T (t)x0〉X (IV.4)

−Re〈A−1T (t)x0,
∫ t

0
T−1(t− s)Bu(s)ds〉X (IV.5)

−Re
〈

A−1
−1

∫ t

0
T−1(t− s)Bu(s)ds,T (t)x0

〉
X

−Re
〈

A−1
−1

∫ t

0
T−1(t− s)Bu(s)ds,

∫ t

0
T−1(t− s)Bu(s)ds

〉
X
.

The terms in the second line (IV.4) of the previous
expression can be transformed into:

Re〈A−1T (t)x0,x0〉X −Re〈A−1T (t)x0,T (t)x0〉X
=Re〈A−1T (t)x0,x0−T (t)x0〉X
=Re〈A−1T (t)x0,AA−1(x0−T (t)x0)〉X
=Re〈A∗A−1T (t)x0,A−1(x0−T (t)x0)〉X . (IV.6)

Next we estimate the expression in (IV.5) by means of the
Cauchy-Schwarz inequality:

−Re〈A−1T (t)x0,
∫ t

0
T−1(t− s)Bu(s)ds〉X

=−Re〈A∗A−1T (t)x0,A−1
−1

∫ t

0
T−1(t− s)Bu(s)ds〉X

≤‖A∗A−1T (t)x0‖X · ‖A−1
−1

∫ t

0
T−1(t− s)Bu(s)ds‖X

=‖A∗A−1T (t)x0‖X · ‖
∫ t

0
A−1
−1T−1(t− s)Bu(s)ds‖X .

Due to the fact, that A−1
−1 and T−1(t−s) commute, we proceed

to

−Re〈A−1T (t)x0,
∫ t

0
T−1(t− s)Bu(s)ds〉X

≤‖A∗A−1T (t)x0‖X ·
∥∥∥∫ t

0
T−1(t− s)A−1

−1Bu(s)ds
∥∥∥

X
.

Now, since A−1 : X → D(A) is a bounded operator, then
also A−1

−1 : X−1 → X is a bounded operator, and since B ∈
L(U,X−1), we have that A−1

−1B ∈ L(U,X). In particular,

T−1(t − s)A−1
−1Bu(s) ∈ X for all s ≥ 0, and hence we can

continue the estimates as

−Re〈A−1T (t)x0,
∫ t

0
T−1(t− s)Bu(s)ds〉X

≤‖A∗A−1T (t)x0‖X ·
∫ t

0

∥∥T−1(t− s)A−1
−1Bu(s)

∥∥
X ds

≤‖A∗A−1T (t)x0‖X ·
∫ t

0
Mds‖A−1

−1B‖L(U,X)‖u‖∞

≤‖A∗A−1T (t)x0‖X ·Mt‖A−1
−1B‖L(U,X)‖u‖∞. (IV.7)

Substituting (IV.6) and (IV.7) into (IV.3), and using that
T (t) commutes with the resolvent of A, so in particular with
A−1, we obtain:

V (φ(t,x0,u))−V (x0)

≤ −Re〈T (t)A−1x0−A−1x0,x0〉X
−Re〈A∗A−1T (t)x0,T (t)A−1x0−A−1x0〉X
+‖A∗A−1T (t)x0‖X ·Mt‖A−1

−1B‖L(U,X)‖u‖∞

+Mt‖A−1
−1B‖L(U,X)‖u‖∞ · ‖T (t)x0‖X

+Mt‖A−1
−1B‖L(U,X)κ(t)‖u‖2

∞,

which implies for every ε > 0

V̇u(x0) = lim
t↘0

1
t
(V (φ(t,x0,u))−V (x0))

≤−‖x0‖2
X −Re〈A∗A−1x0,x0〉X

+‖A∗A−1x0‖X‖A−1
−1B‖L(U,X)M‖u‖∞

+‖A−1
−1B‖L(U,X)M‖u‖∞‖x0‖X

+‖A−1
−1B‖L(U,X)Mκ(0)‖u‖2

∞

≤−‖x0‖2
X −Re〈A∗A−1x0,x0〉X

+‖x0‖X (‖A∗A−1‖L(X)+1)‖A−1
−1B‖M‖u‖∞

+‖A−1
−1B‖L(U,X)Mκ(0)‖u‖2

∞

Using Young’s inequality and the estimate (IV.1) we proceed
to

V̇u(x0)≤−‖x0‖2
X −Re〈A∗A−1x0,x0〉X + ε‖x0‖2

X

+
(‖A∗A−1‖L(X)+1)2‖A−1

−1B‖2
L(U,X)M

2

4ε
‖u‖2

∞

+‖A−1
−1B‖L(U,X)Mκ(0)‖u‖2

∞

≤(ε−1+δ )‖x0‖2
X

+
( 1

4ε
(‖A∗A−1‖L(X)+1)2‖A−1

−1B‖2
L(U,X)M

2

+‖A−1
−1B‖L(U,X)κ(0)

)
‖u‖2

∞

Here we have used in particular that A∗A−1 is a bounded
operator, which follows from ran(A−1) = D(A)⊂D(A∗) and
where the last inclusion holds by assumption. This shows
the dissipation inequality (III.3).

Remark 4.2: Inequality (IV.1) is equivalent to the exis-
tence of a constant δ ′ < 1 satisfying

‖(A+A∗)x‖2
X +δ

′‖Ax‖2
X ≥ ‖A∗x‖2

X , x ∈ D(A).



If A generates a strongly continuous contraction semigroup,
then (IV.1) implies that the semigroup (T (t))t≥0 is 2-
hypercontractive [22]. In particular, subnormal and normal
operators whose spectrum lie in a sector satisfy (IV.1), see
Proposition 5.2.

Corollary 4.3: Let A generate an exponentially stable
analytic semigroup on a Hilbert space X and assume that
A is a normal operator. Further, let B ∈ L(Cn,X−1) be ∞-
admissible. Then

V (x) :=−Re〈A−1x,x〉X (IV.8)

is an ISS Lyapunov function satisfying

V̇u(x)≤−c1‖x0‖2
X + c2‖u‖2

∞

for some constants c1,c2 > 0 and all x0 ∈ X and u ∈
L∞([0,∞),U).

Proof: Section V-B shows that the assumption of
Proposition 4.1 are satisfied.

Remark 4.4: By Section V-B normality in Corollary 4.3
can be replaced by subnormality.

V. APPLICATIONS OF PROPOSITION 4.1

A. ISS Lyapunov functions for a heat equation with Dirichlet
boundary input

It is well-known that a classical heat equation with Dirich-
let boundary inputs is ISS, which has been verified by means
of several different methods: [6], [7], [8]. However, no con-
structions for ISS Lyapunov functions have been proposed.
In the next example we show that using Proposition 4.1 one
can construct a non-coercive ISS Lyapunov function for this
system.

Example 5.1: Let us consider the following boundary
control system given by the one-dimensional heat equation
on the spatial domain [0,1] with Dirichlet boundary control
at the point 1,

xt(ξ , t) = axξ ξ (ξ , t), ξ ∈ (0,1), t > 0,

x(0, t) = 0, x(1, t) = u(t), t > 0,
x(ξ ,0) = x0(ξ ),

where a > 0.
We choose X = L2(0,1), U = C,

A f = f ′′, f ∈ D(A),

D(A) =
{

f ∈ H2(0,1) | f (0) = f (1) = 0
}
.

and B = aδ ′1. Clearly, A is a self-adjoint operator on X
generating an exponentially stable analytic C0-semigroup on
X . Moreover, B∈X−1 = L(U,X−1) is ∞-admissible, for every
x0 ∈ X and u ∈ L∞(0,∞) the corresponding mild solution is
continuous and κ(0) = 0 [6]. Further, in [6] the following
ISS-estimates has been shown:

‖x(t)‖L2(0,1) ≤ e−aπ2t‖x0‖L2(0,1)+
1√
3
‖u‖L∞(0,t),

‖x(t)‖L2(0,1) ≤ e−aπ2t‖x0‖L2(0,1)+ c
(∫ t

0
|u(s)|pds

)1/p

,

for every x0 ∈ X , u ∈ L∞(0,∞), p > 2 and some constant c =
c(p) > 0. Due to the self-adjointness of A, Equation (IV.1)
holds for every δ ≥−1. Then we may compute that

V (x) = −〈A−1x,x〉X

=
∫ 1

0

(∫ 1

ξ

(ξ − τ)x(τ)dτ

)
x(ξ )dξ

is a non-coercive ISS Lyapunov function for the one-
dimensional heat equation on the spatial domain [0,1] with
Dirichlet boundary control at the point 1.

B. An inequality for subnormal A

In this section we would like to argue that the inequality
(IV.1), which is one of the central assumptions in Proposi-
tion 4.1, holds for a broad class of subnormal operators over
Hilbert spaces.

Let A be closed, densely-defined and subnormal operator
on a Hilbert space X . Here A is called subnormal, if A = N|X
where N is a normal operator on a Hilbert space Z and X is
an invariant subspace for N, that is, N(D(N)∩X) ⊆ X . We
write P for the orthogonal projection from Z onto X . That is,
up to unitary equivalence N = Mφ , a multiplication operator
on some L2(µ) space, and A f = φ f , A∗ f = P(φ f ). See,
for example [23, Th. X.4.19]. Moreover, a closed, densely-
defined and subnormal operator A satisfies D(A) ⊂ D(A∗),
since D(N) = D(N∗) [23, Prop. X.4.3].

For θ ∈ [0,π/2) we define

Σθ := {s ∈ C | |arg(−s)| ≤ θ}.

Proposition 5.2: Let A be closed, densely-defined and
subnormal operator on a Hilbert space X satisfying σ(A)⊆
Σθ , for some θ ∈ [0,π/2). Then for δ ≥ 1−2cos2 θ we have

Re〈x,A2x〉X +δ‖Ax‖2
X ≥ 0, f ∈ D(A). (V.1)

Proof: Expanding (V.1) we obtain the equivalent asser-
tion

Re〈φ f ,Pφ f 〉+δ‖φ f‖2 ≥ 0, (V.2)

and we note that 〈φ f ,Pφ f 〉= 〈φ f ,φ f 〉= 〈φ 2 f , f 〉. The left
hand side of (V.2) is

〈(Reφ
2 +δ |φ |2) f , f 〉= 〈(2(Reφ)2 +(δ −1)|φ |2) f , f 〉.

Now, since the essential range of φ lies in σ(A), we have
by sectoriality

2(Reφ)2 ≥ 2cos2
θ |φ |2

and hence

〈(2(Reφ)2 +(δ −1)|φ |2) f , f 〉 ≥ 0,

for δ ≥ 1−2cos2 θ .
Proposition 5.3: Let A be closed, densely-defined and

subnormal operator on a Hilbert space X satisfying σ(A)⊆
Σθ , for some θ ∈ [0,π/2). Then A generates a analytic C0-
semigroup of contractions.

Example 5.4: 1) Clearly, every normal operator on a
Hilbert space is subnormal.

2) Symmetric operators on Hilbert spaces are subnormal.



3) Isometries are subnormal, and hence a right shift oper-
ator on L2(0,∞) is subnormal.

4) Multiplication operators (analytic Toeplitz operators Tg)
on the Hardy space H2(D) are subnormal, and Tg is
sectorial if g(D)⊆ Σθ for some θ ∈ [0,π/2).

VI. CONCLUSION

In this paper we have investigated the question to what
extent the existence of a noncoercive ISS Lyapunov function
implies that a forward complete system is ISS. It was shown
that the property of integral-to-integral ISS follows from the
existence of such Lyapunov functions for a large class of
systems. In order to arrive at ISS in its own right further
assumptions were necessary. These further assumptions, the
CEP property and the BRS property relate to questions of
the richness of the possible dynamics both close to the origin
and in the large.

The construction of noncoercive Lyapunov functions is to
some extent natural in infinite dimesions. Already for Datko’s
construction of quadratic Lyapunov functions for exponen-
tially stable linear systems on Hilbert space it sometimes
cannot be avoided to use a noncoercive version. Also we have
seen in this paper for some classes of linear systems with
unbounded input operators the construction of Lyapunov
functions using the resolvent at 0 is a natural choice and
one that leads to noncoercive Lyapunov functions.

In future work we plan to extend the class of systems for
which explicit constructions are possible and to deepen our
understanding of noncoercive ISS Lyapunov functions.
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