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Abstract— We show that an infinite network of input-to-state
stable (ISS) systems, admitting ISS Lyapunov functions, itself
admits an ISS Lyapunov function, provided that the couplings
of the subsystems are sufficiently weak. The strength of the
couplings is described in terms of the properties of the so-
called gain operator, built from the interconnection gains. If the
discrete-time system induced by a slightly scaled gain operator
is uniformly globally asymptotically stable, an ISS Lyapunov
function for the infinite network can be constructed.

Keywords: large-scale systems, small-gain theorems, input-to-state
stability, nonlinear systems, infinite-dimensional systems.

I. INTRODUCTION

Current society is surrounded by networks: social networks,
power grids, transportation and manufacturing networks,
etc. These networks grow in size from year to year, and
emerging technologies, such as the Internet of Things, Cloud
Computing, 5G communication, and smart cities, make this
trend even more distinct. As the stability properties of the
networks may deteriorate with the increase in the number
of participating agents [1], it is natural to study infinite-
dimensional over-approximations of large-scale networks as
a worst-case scenario.

The theory of linear spatially invariant systems [2], [3],
[4], [5] has a prominent place in these investigations. Here,
infinitely many subsystems are coupled via the same pattern.
This nice geometric structure together with the linearity of
subsystems allows to develop powerful stability criteria.

On the other hand, in the stability analysis of finite net-
works with nonlinear components, groundbreaking results
have been obtained within the framework of input-to-state
stability (ISS) [6]. According to the ISS small-gain approach,
the influence of any subsystem on other subsystems of a
network is characterized by so-called gain functions. The
gain operator constructed from these functions characterizes
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the interconnection structure of the network. The small-
gain theorems for couplings of finitely many ISS systems
of ordinary differential equations (ODEs) [7], [8], [9], [10]
state that if the gains are small enough (in an appropriate
sense), the network is stable. These results have numerous
applications in systems theory [11], [12], [13], [14].

Recently, the intensive development of an infinite-
dimensional ISS theory has been initiated; see [15],
[16] for a comprehensive overview of the topic, and [17] for
an overview of the linear theory. This progress motivated
the development of the ISS small-gain framework for the
stability analysis of infinite interconnections of nonlinear
systems without any spatial invariance assumption. This
research was initiated in [18], where nonlinear Lyapunov-
based small-gain theorems have been obtained under the
quite strong assumption that all gains are uniformly less
than the identity. In [19], tight Lyapunov-based small-gain
theorems have been obtained for networks of exponentially
ISS systems with linear gains.

Nonlinear trajectory-based small-gain theorems for infinite
networks have been derived in [20]. Here, it was shown that
an infinite network of ISS systems is ISS if the corresponding
nonlinear gain operator satisfies the so-called monotone
limit property, which in turn implies the uniform small-gain
condition [20], which is equivalent to the monotone bounded
invertibility property. The latter played a key role in the
derivation of the ISS small-gain theorem for finite networks
in [9]; see, e.g., [9, Lem. 13].

This paper is strongly motivated by [21], where the ro-
bust strong small-gain condition has been introduced and
a method to construct paths of strict decay was proposed,
based on the concept of the strong transitive closure of the
gain operator. For finite networks, this method was proposed
in [22, Prop. 2.7, Rem. 2.8]; see also [23] for more details
on the importance of this concept in the small-gain theory.
Based on these results, in [21] a small-gain theorem for
infinite networks, and the construction of an ISS Lyapunov
function for the network were proposed under the assumption
that a linear path of strict decay exists. In general, this
requirement is quite restrictive, and Lyapunov-based small-
gain theorems for finite networks developed in [10] do not
require the linearity assumption for the path of strict decay.

Contribution. We consider an infinite network of ISS control
systems given by ODEs. We assume that these systems admit
ISS Lyapunov functions with corresponding Lyapunov gains,
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giving rise to the gain operator Γ that characterizes the
influence of the subsystems on each other. We show that the
existence of a (nonlinear) path of strict decay for Γ (together
with some uniformity conditions) implies ISS of the whole
network and the existence of an ISS Lyapunov function. Our
result partially extends the nonlinear Lyapunov-based small-
gain theorem for finite networks (in maximum formulation)
in [10] to infinite dimensions, recovers the Lyapunov-based
small-gain theorem for infinite networks in [21], and partially
recovers the main result in [18].

In addition, we introduce the max-robust small-gain con-
dition, which is less conservative than the robust small-
gain condition from [21], but is better suited for max-type
gain operators, and can be characterized in terms of the
asymptotic properties of the discrete-time system induced by
the gain operator. In our second main result (Theorem VI.5),
we show that the uniform global asymptotic stability (UGAS)
of the system induced by a scaled gain operator guarantees
the existence of a path of strict decay. We explicitly construct
this path via the concept of the strong transitive closure of the
gain operator. Finally, we characterize the UGAS property
of the induced system in terms of small-gain conditions and
provide sufficient conditions for it. If the gain operator is
homogeneous and subadditive, further characterizations for
the UGAS property have been shown in [24].

Complete proofs of the presented results can be found in the
journal version [25] of this paper.

Notation. We write R (R+) for the set of (nonnegative) real
numbers and Z (Z+) for the set of (nonnegative) integers.
By C0(X,Y ), we denote the set of all continuous mappings
from a space X to a space Y . In any metric space, we write
Bδ(x) for the open ball of radius δ > 0 centered at x, and
int(A) for the interior of a subset A ⊂ X . A continuous
function α : R+ → R+ is called positive definite if α(0) = 0
and α(r) > 0 for all r > 0. For the sets of comparison
functions K, K∞, L and KL, we refer to [26].

We write `∞ for the space of bounded real sequences s =
(si)i∈N, which is a Banach space with the norm ‖s‖`∞ :=
supi∈N |si|. The positive cone in `∞ is given by `+∞ := {s ∈
`∞ : si ≥ 0, ∀i ∈ N}. We write s1 ≥ s2 if s1−s2 ∈ `+∞ and
s1 6≥ s2 if s1− s2 /∈ `+∞. We define 1 := (1, 1, 1, . . .) ∈ `+∞.
By ei, i ∈ N, we denote the i-th unit vector in `∞. We write
s1 ⊕ s2 for the componentwise maximum of s1, s2 ∈ `+∞.
By πi : `∞ → R, we denote the canonical projection onto
the i-th component, πi(s) = si.

A function λ : R+ → X into some space X is called
piecewise right-continuous if there is a partition of R+ into
disjoint subintervals, R+ = [0, t1) ∪ [t1, t2) ∪ [t2, t3) ∪ . . .,
such that λ is continuous on each subinterval.

II. INTERCONNECTIONS

Consider a family of control systems of the form

Σi : ẋi = fi(xi, x̄i, ui), i ∈ N. (1)

This family comes with sequences (ni)i∈N and (mi)i∈N of
positive integers as well as finite (possibly empty) sets Ii ⊂
N, i /∈ Ii, such that the following assumptions are satisfied:

• The state vector xi is an element of Rni .
• The internal input vector x̄i is composed of the state

vectors xj , j ∈ Ii, and thus is an element of RNi , where
Ni :=

∑
j∈Ii nj .

• The external input vector ui is an element of Rmi .
• The right-hand side fi : Rni ×RNi ×Rmi → Rni is a

continuous function.
• For every initial state xi0 ∈ Rni and all essentially

bounded inputs x̄i(·) and ui(·), there is a unique so-
lution of Σi, which we denote by φi(t, xi0, x̄i, ui) (it
may be defined only on a bounded time interval).

For each i ∈ N, we fix (arbitrary) norms on the spaces
Rni and Rmi , respectively. For brevity in notation, we avoid
adding an index to these norms, indicating to which space
they belong, and simply write | · | for each of them. The
interconnection of the systems Σi, i ∈ N, is defined on the
state space X := `∞(N, (ni)), where

`∞(N, (ni)) := {x = (xi)i∈N : xi ∈ Rni , sup
i∈N
|xi| <∞}.

This space is a Banach space with the `∞-type norm

‖x‖X := sup
i∈N
|xi|.

The space of admissible external input values is likewise
defined as the Banach space

U := `∞(N, (mi)), ‖u‖U := sup
i∈N
|ui|.

The class of admissible external input functions is chosen as

U := {u ∈ L∞(R+, U) : u is piecewise right-continuous},

which will be equipped with the L∞-norm

‖u‖U := ess sup
t∈R+

|u(t)|U .

The right-hand side of the interconnected system is

f : X × U →
∏
i∈N
Rni , f(x, u) := (fi(xi, x̄i, ui))i∈N.

Hence, the interconnected system can formally be written as
the differential equation

Σ : ẋ = f(x, u).

For fixed (u, x0) ∈ U × X , a function λ : J → X , where
J ⊂ R is an interval of the form [0, T ) with 0 < T ≤ ∞,
is called a solution of the Cauchy problem ẋ = f(x, u),
x(0) = x0, if s 7→ f(λ(s), u(s)) is a locally integrable X-
valued function (in the Bochner integral sense) and

λ(t) = x0 +

∫ t

0

f(λ(s), u(s)) ds for all t ∈ J.

We say that the system Σ is well-posed if for every ini-
tial value x0 ∈ X and every external input u ∈ U , a
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unique maximal solution, which we denote by φ(·, x0, u) :
[0, tmax(x0, u))→ X exists, where 0 < tmax(x0, u) ≤ ∞.

Sufficient conditions for well-posedness are provided by [19,
Cor. III.3]. In the rest of the paper, we assume the following.

II.1 Assumption: The system Σ is well-posed, and all
of its uniformly bounded maximal solutions φ(·, x, u) are
global, i.e., exist on R+ (this latter property is also called
boundedness-implies-continuation (BIC) property).

II.2 Remark: A sufficient condition for the BIC property is
that the function f is uniformly bounded on bounded balls,
and Lipschitz continuous on bounded balls with respect to
the first argument (see [27, Thm. 4.3.4] for the related result
for systems without inputs).

III. INPUT-TO-STATE STABILITY

We now recall the definition of input-to-state stability.

III.1 Definition: A well-posed system Σ is called input-to-
state stable (ISS) if it is forward complete and there are β ∈
KL and γ ∈ K∞ s.t. for all (t, x, u) ∈ R+ ×X × U

‖φ(t, x, u)‖X ≤ β(‖x‖X , t) + γ(‖u‖U ).

Input-to-state stability is most often verified via the construc-
tion of an ISS Lyapunov function which is defined as follows.

III.2 Definition: A function V : X → R+ is called an ISS
Lyapunov function (in an implication form) for Σ if

(i) V is continuous.

(ii) There exist ψ1, ψ2 ∈ K∞ such that ψ1(‖x‖X) ≤
V (x) ≤ ψ2(‖x‖X) for all x ∈ X .

(iii) There exist γ ∈ K and α ∈ P such that for all x ∈ X
and u ∈ U the following implication holds:

V (x) > γ(‖u‖U ) ⇒ D+Vu(x) ≤ −α(V (x)),

where D+Vu(x) denotes the right upper Dini orbital
derivative defined as

D+Vu(x) := lim sup
t→0+

V (φ(t, x, u))− V (x)

t
.

The importance of ISS Lyapunov functions is due to the
following basic fact (cf. [16, Thm. 2.17]).

III.3 Proposition: If an ISS Lyapunov function for Σ exists,
then Σ is ISS.

IV. NONLINEAR SMALL-GAIN THEOREM

To find an ISS Lyapunov function V for Σ, we exploit the in-
terconnection structure and construct V from ISS Lyapunov
functions of the subsystems Σi under an appropriate small-
gain condition. We introduce the following assumption:

IV.1 Assumption: For each i ∈ N, there exists a continuous
function Vi : Rni → R+ which is continuously differentiable
outside of xi = 0 and satisfies the following properties:

(L1) There exist ψi1, ψi2 ∈ K∞ such that

ψi1(|xi|) ≤ Vi(xi) ≤ ψi2(|xi|) for all xi ∈ Rni .

(L2) There exist γij ∈ K ∪ {0}, where γij = 0 for all j ∈
N \ Ii, and γiu ∈ K as well as αi ∈ P such that for all
x = (xj)j∈N ∈ X and u = (uj)j∈N ∈ U the following
implication holds:

Vi(xi) > max
{

sup
j∈Ii

γij(Vj(xj)), γiu(|ui|)
}

⇒ ∇Vi(xi)fi(xi, x̄i, ui) ≤ −αi(Vi(xi)).

The function Vi is called an ISS Lyapunov function for
Σi. The functions γij and γiu are called internal gains and
external gains, respectively.

Using the internal gains γij from Assumption IV.1, we define
the gain operator Γ : `+∞ → `+∞ by

Γ(s) :=
(

sup
j∈N

γij(sj)
)
i∈N

, Γ : `+∞ → `+∞.

The following assumption guarantees that Γ is well-defined
and continuous, see [21, Lem. 2.1] and [20, Prop. 2].

IV.2 Assumption: The family {γij : i, j ∈ N} is pointwise
equicontinuous. That is, for every r ≥ 0 and every ε > 0 there
exists δ = δ(r, ε) > 0 such that |r − r̃| ≤ δ, r̃ ∈ R+, implies
|γij(r)− γij(r̃)| ≤ ε for all i, j ∈ N.

We now introduce the concept of a path of strict decay
which is of crucial importance in the construction of an ISS
Lyapunov function for the interconnected system.

IV.3 Definition: A mapping σ : R+ → `+∞ is called a path
of strict decay (for Γ), if the following properties hold:

(i) There exists a function ρ ∈ K∞ such that

Γ(σ(r)) ≤ (id + ρ)−1 ◦ σ(r) for all r ≥ 0,

where (id + ρ)−1 is applied componentwise.

(ii) There exist σmin, σmax ∈ K∞ satisfying σmin ≤ σi ≤
σmax for all i ∈ N.

(iii) Each component function σi, i ∈ N, is in K∞.

(iv) For every compact interval K ⊂ (0,∞), there exist 0 <
c ≤ C <∞ such that for all r1, r2 ∈ K and i ∈ N:

c|r1 − r2| ≤ |σ−1i (r1)− σ−1i (r2)| ≤ C|r1 − r2|.

In Section VI, we provide a method to construct paths of
strict decay under suitable assumptions.

Our small-gain result now reads as follows.
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IV.4 Theorem: Consider the interconnected system Σ, com-
posed of the subsystems Σi, i ∈ N and let the following
assumptions be satisfied.

(i) Σ is well-posed and satisfies the BIC property (Ass. II.1).

(ii) There exist ISS Lyapunov functions Vi for the subsys-
tems Σi with associated internal gains γij and external
gains γiu (Ass. IV.1). Moreover, there exist ψ1, ψ2 ∈
K∞ such that ψ1 ≤ ψi1 and ψi2 ≤ ψ2 for all i ∈ N.

(iii) The family of internal gains γij is pointwise equicontin-
uous (Ass. IV.2) and there exists γumax ∈ K such that
γiu ≤ γumax for all i ∈ N.

(iv) There exists a path σ : R+ → `+∞ of strict decay for the
gain operator Γ, defined from the internal gains γij .

(v) For each R > 0, there is L(R) > 0 such that

|Vi(xi)− Vi(yi)| ≤ L(R)|xi − yi|

for all i ∈ N and xi, yi ∈ BR(0) ⊂ Rni .

(vi) There exists α̃ ∈ P such that αi ≥ α̃ for all i ∈ N.

Then the following is an ISS Lyapunov function for Σ:

V (x) := sup
i∈N

σ−1i (Vi(xi)) for all x ∈ X.

Moreover, V is locally Lipschitz continuous on X \ {0}. In
particular, Σ is ISS.

V. GAIN OPERATORS AND THEIR PROPERTIES

A crucial assumption in Theorem IV.4 is the existence of a
path of strict decay for the operator Γ. Our next aim is to
understand under which conditions such a path exists, and to
provide an explicit expression for it. We base our analysis on
the properties of the gain operator, presented in this section.

From now on, we always assume that the family {γij} is
pointwise equicontinuous (Ass. IV.2), implying that Γ is
well-defined and continuous. Observe that Γ(0) = 0 and
that Γ is monotone: Γ(s1) ≤ Γ(s2) whenever s1 ≤ s2.

Now we recall the important robust and robust strong small-
gain conditions, introduced in [21]. We modify these proper-
ties to improve compatibility with max-type gain operators.

V.1 Definition: We say that the operator Γ satisfies

(i) the small-gain condition (SGC) if

Γ(s) � s for all s ∈ `+∞ \ {0}.

(ii) the strong small-gain condition if there is ρ ∈ K∞ with

Dρ ◦ Γ(s) � s for all s ∈ `+∞ \ {0}

for the operator Dρ : `+∞ → `+∞, defined by

Dρ(s) :=
(
(id + ρ)(si)

)
i∈N.

(iii) the max-robust small-gain condition if there is ω ∈ K∞
with ω < id such that for all i, j ∈ N the operator

Γij(s) := Γ(s)⊕ ω(sj)ei for all s ∈ `+∞ (2)

satisfies the small-gain condition.

(iv) the max-robust strong small-gain condition if there are
ω ∈ K∞ with ω < id and ρ ∈ K∞ such that for all
i, j ∈ N the operator Γij , as defined in (2), satisfies the
strong small-gain condition with the same ρ for all i, j.

In the next lemma, we introduce the strong transitive closure
(or Kleene star operator) Q of Γ, which provides the crucial
tool for the construction of a path of strict decay. This result
was shown in [21, Lem. 4.3], slightly strengthened in [20,
Lem. 14] and is now even more strengthened, since the robust
SGC is replaced by the weaker max-robust SGC.

V.2 Lemma: Assume that Γ satisfies the max-robust SGC.
Then the operator

Q(s) :=
⊕
k∈Z+

Γk(s) for all s ∈ `+∞ (3)

is well-defined and has the following properties:

s ≤ Q(s) ≤ ω−1(‖s‖`∞)1 for all s ∈ `+∞,
Γ(Q(s)) ≤ Q(s) for all s ∈ `+∞.

Some further simple properties of the operator Q are sum-
marized in the following proposition.

V.3 Proposition: Assume that Γ : `+∞ → `+∞ is well-
defined, continuous and satisfies the max-robust SGC. Then
the operator Q in (3) is monotone, satisfies Q(0) = 0, and its
image is given by imQ = {s ∈ `+∞ : Γ(s) ≤ s}. This set is
closed, contains s = 0, is cofinal (i.e., for any x ∈ `+∞ there is
s ∈ imQ with x ≤ s) and satisfies Γ(imQ) ⊂ imQ.

For the gain operator Γ and any θ ∈ K∞, we define the
operator Γθ : `+∞ → `+∞ by Γθ(s) := (id + θ) ◦ Γ(s) for all
s ∈ `+∞. Here we apply the function id + θ componentwise:

Γθ(s) =
(

sup
j∈N

(id + θ) ◦ γij(sj)
)
i∈N.

Hence, the operator Γθ is structurally the same as Γ, but with
scaled gain functions.

We close the section with basic properties of gain operators
satisfying the max-robust strong SGC:

V.4 Lemma: Assume that Γ satisfies the max-robust strong
SGC with given ρ, ω ∈ K∞. Then Γρ satisfies the max-robust
SGC with the same ω ∈ K∞. Furthermore, there is θ ∈ K∞
such that Γθ also satisfies the max-robust strong SGC.

VI. CONSTRUCTION OF PATHS OF STRICT DECAY

For the construction of paths of strict decay, the stability
properties of the following discrete-time dynamical system
induced by the gain operator Γ are of great importance:

s(k + 1) = Γ(s(k)), k ∈ Z+. (4)

VI.1 Definition: System (4) is called
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• uniformly globally stable (UGS) if there is ϕ ∈ K∞, s.t.
for any initial state s ∈ `+∞, the solution of (4) satisfies

‖Γk(s)‖`∞ ≤ ϕ(‖s‖`∞), ∀k ∈ Z+.

• uniformly globally asymptotically stable (UGAS) if
there is β ∈ KL, so that for any s ∈ `+∞

‖Γk(s)‖`∞ ≤ β(‖s‖`∞ , k), ∀k ∈ Z+.

• globally attractive if lim
k→∞

‖Γk(s)‖`∞ = 0 ∀s ∈ `+∞.

The next proposition characterizes the max-robust SGC in
terms of the stability properties of the system (4). It shows
that the max-robust SGC is not quite equivalent to UGAS,
but to a weaker property.

VI.2 Proposition: Assume that Γ is well-defined and contin-
uous. Then the following statements are equivalent:

(i) The system (4) is UGS and each of its trajectories
converges to zero componentwise, i.e. πi ◦ Γk(s) → 0
as k →∞ for every s ∈ `+∞ and i ∈ N.

(ii) Γ satisfies the max-robust SGC.

We provide a brief sketch of the proof of Proposition VI.2:
For the implication “(i)⇒ (ii)”, we first show that (i) implies
the existence of ϕ ∈ K∞ such that for any s, b ∈ `+∞

s ≤ Γ(s)⊕ b ⇒ ‖s‖`∞ ≤ ϕ(‖b‖`∞). (5)

To show this, we use in particular that Γ is a max-preserving
operator, i.e. Γ(s1⊕s2) = Γ(s1)⊕Γ(s2) for any s1, s2 ∈ `+∞.
From (5), it easily follows that the max-robust SGC holds for
any ω < ϕ−1. For the implication “(ii)⇒ (i)”, we show that
for any s ∈ im(Q), the trajectory (Γn(s))n∈N0

converges
monotonically and componentwise to a fixed point s∗ of Γ.
Since Γ satisfies the SGC, this implies s∗ = 0. The proof is
completed by noting that s ≤ Q(s) for any s.

By an example (see [25, Ex. V.3]), which is not provided
here due to space constraints, one can show that the two
statements in Proposition VI.2 are not equivalent to UGAS.
Instead, we have the following relations:

UGAS

max-robust SGC

UGS ∧ global attractivity (GATT)

UGS ∧ componentwise GATT

/

It is well-known that for finite networks the max-preserving
gain operator Γ induces a UGAS system if and only if all
cycles composed of gains are contractions, see, e.g., [28,
Thm. 6.4]. In the case of infinite networks, UGAS of the
induced system can be characterized in terms of sufficiently
long chains of gains, as shown in the next proposition.

VI.3 Proposition: Assume that the gain operator Γ is well-
defined, continuous and satisfies the max-robust small-gain
condition. Then the following statements are equivalent:

(i) The induced system (4) is UGAS.

(ii) There exist η ∈ K with η < id and i0 ∈ N such that for
every r ≥ 0 there is n ∈ N with

sup
j0,j1,...,jn∈N

j0≥i0

γj0j1 ◦ · · · ◦ γjn−1jn(r) ≤ η(r).

The following proposition is crucial for the construction of
paths of strict decay.

VI.4 Proposition: Let Γ : `+∞ → `+∞ be well-defined and
continuous. If (4) is UGAS, then Q is continuous and for all
s1, s2 ∈ int(`+∞) with s1 ≤ s2, there is m ∈ N such that

Q(s) = sup
0≤k≤m

Γk(s), ∀s : s1 ≤ s ≤ s2.

We can finally present our main result on the existence of
paths of strict decay. It extends the first result of this kind in
[21, Lem. 4.5], where properties (i)–(iii) of a path of strict
decay have been shown under similar assumptions.

VI.5 Theorem: Let the following assumptions hold:

(a) There exists θ ∈ K∞ such that the system induced by
Γθ = (id + θ) ◦ Γ is UGAS.

(b) For each compact interval K ⊂ (0,∞), there are 0 <
l ≤ L < ∞ with l(r2 − r1) ≤ γij(r2) − γij(r1) ≤
L(r2 − r1) for all nonzero γij and r1 < r2 in K.

Then there exists a path of strict decay σ : R+ → `+∞ for Γ.

The proof of Theorem VI.5, given in [25], provides the
following explicit expression for a path of strict decay:

σ(r) = Qθ(r1) =

∞⊕
k=0

Γkθ(r1).

Proposition VI.4 is used to prove that the component func-
tions σi are actually elements of K∞. Lemma V.2 is used to
prove that property (ii) of paths of strict decay is satisfied
with σmin = id and σmax = ω−1. Finally, Assumption (b) in
Proposition VI.5 is used to prove the local uniform Lipschitz
property (iv) required in Def. IV.3. It is also interesting to
note that the max-robust SGC for Γθ already implies that σ,
as defined above, satisfies properties (i)–(iii) in Def. IV.3.

Since UGAS of the discrete-time system, induced by the
scaled gain operator Γθ, is a key requirement for the exis-
tence of a path of strict decay, we provide some sufficient
conditions for UGAS of the system induced by a gain
operator. The next proposition describes a way of reducing
the proof of UGAS of (4) to finitely many computations.

VI.6 Proposition: Assume that there exists a positive integer
N and a map p : N → {1, . . . , N} as well as a family {γ̄ij :
i, j = 1, . . . , N} ⊂ K ∪ {0} of virtual gains such that

γij ≤ γ̄p(i)p(j) for all i, j ∈ N.
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Let Γ̄ : RN+ → RN+ , s 7→ (sup1≤j≤N γ̄ij(sj))1≤i≤N be the
associated virtual gain operator. If Γ̄ satisfies the SGC, Γ̄(s) 6≥
s for all s ∈ RN+ \ {0}, the system (4) induced by Γ is UGAS.

The proof of the proposition relies on majorization of the
trajectories of Γ by those of Γ̄ and uses that in finite
dimensions, the SGC suffices to obtain UGAS in the case
of max-type gain operators.

Another method of checking UGAS of (4) via the introduc-
tion of virtual gains, based on a compactification of the index
set N, is described in the next proposition.

VI.7 Proposition: LetN∗ := N∪{∞} and assume that there
exist virtual gains γ̄ij ∈ K ∪ {0}, i, j ∈ N∗ (where γ̄∞∞ 6= 0
is allowed), satisfying the following assumptions:

(i) γ̄ij = γij whenever (i, j) ∈ N× N.

(ii) The virtual gain operator

Γ̄ : `+∞(N∗)→ `+∞(N∗), s 7→ ( sup
j∈N∗

γ̄ij(sj))i∈N∗ ,

is well-defined, continuous and satisfies the max-robust
SGC with some ω ∈ K∞.

(iii) For each i ∈ N∗, γ̄ij 6= 0 only for finitely many j ∈ N∗.
(iv) There exists k0 ∈ N such that for all r > 0

lim sup
i→∞

sup
j1,...,jk0

∈N∗
γ̄ij1 ◦ · · · ◦ γ̄jk0−1jk0

◦ ω−1(r)

≤ sup
j1,...,jk0

∈N∗
γ̄∞j1 ◦ · · · ◦ γ̄jk0−1jk0

(r).

Then, the system (4) induced by Γ is UGAS.

The proof of Proposition VI.7 relies on a general result
provided in [29, Fact A.1.24] about interchanging the order
of infimum and supremum in certain expressions. We know
from Proposition VI.2 that the max-robust SGC implies

sup
i∈N

inf
k∈Z+

Γki (s) = 0 for all s ∈ `+∞.

The assumptions in Proposition VI.7 guarantee that sup and
inf in this identity can be interchanged, which is equivalent
to global attractivity and in combination with UGS, to UGAS
of system (4). The special choice of γ̄ij = 0 whenever i =∞
or j =∞ in Proposition VI.7 characterizes the compactness
of the operator Γk0 , see [25, Prop. VII.5].
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