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Abstract— We investigate stabilizability of switched systems
of differential-algebraic equations (DAEs). For such systems
we introduce a parameterized family of switched ordinary
differential equations that approximate the dynamic behavior
of the switched DAE. A criterion for stabilizability of a switched
DAE system using time-dependent switching is obtained in
terms of these parameterized approximations. The tightness
of the proposed criterion is analyzed.
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I. INTRODUCTION

In this paper we investigate the stabilizability of a system

of switched differential-algebraic equations (DAEs). The

system consists of m constituent linear DAEs of the form:

Eiẋ = Aix (1)

where Ei,Ai ∈ R
n×n for i ∈ I := {1, . . . ,m}. The dynamics

(Ei,Ai) of the switched linear DAE change instantaneously

according to some piecewise continuous switching rule. In

this note we investigate the existence of time-dependent

switching signals σ : R+ → I such that the resulting

switched linear DAE is asymptotically stable.

Whenever the consistency spaces of the constituent sys-

tems do not coincide the solution of the switched linear DAE

may exhibit jumps at the switching instances. The jumps

between the consistency spaces introduce new phenomena

to the dynamics of switched DAE systems and make it

considerably more complicated to analyze. To formalize

the concept of a switched DAE system, we exploit the

distributional framework introduced in [15].

In contrast to the DAE case, for stabilizability of switched

ODE systems (when all Ei = I) a number of results is

available, see [18], [4], [9], [3], [8], [12], [10]. Thus, we

may wish to use the results for stabilizability of ordinary

differential equations to study stabilizability of DAEs. To

follow this strategy, we approximate in Section III every

constituent system of the switched system by an ODE, and

then study the stabilizability of a switched ODE, constructed
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from such ODE-approximations. In this way we derive a

criterion of stabilizability of differential-algebraic equations.

Approximation methods in DAE theory have a long his-

tory. In particular, within singular perturbation approach the

behavior of ODEs for small parameters is studied with the

help of DAE systems [2, p. 56]. Another method has been

used in [17, Theorem 6.2], where it is shown that results

on the existence of common Lyapunov functions may be

transferred from the ODE to the DAE case by adding a

differential part to what we call here the flow matrix, see

(13) below. Note, however, that in [17] there is no dynamic

interpretation of this procedure. Approximation of switched

DAEs via averaging has been studied in a recent paper [5].

However, at the time this method has been elaborated only

for switched DAEs with 2 constitutive systems and commu-

tative consistency projectors. Another interesting approach to

reduce the complexity of the stability analysis of switched

DAE systems can be found in [11].

While most stabilization procedures for switched linear

systems propose a feedback approach, in this paper we

concentrate on the stabilization by time-dependent switching.

The paper is structured as follows. In Section II we

introduce the main definitions and notation. In particular,

we introduce the flow matrices and consistency projectors

needed in the description of solutions of switched DAEs.

In all our considerations we assume that Dirac impulses

do not appear in the solutions we consider. In Section III

we investigate stabilizability via time-dependent switching

signals. We introduce a family of parameterized switched

ordinary differential equations that is used to characterize

stabilizability. In particular, a uniform stabilizability property

of the parameterized family is equivalent to stabilizability

of the switched DAE. A counterexample shows that the

parameterized family may be stabilizable in a non-uniform

way, from which it cannot be concluded that the DAE is

stabilizable.

II. SOLUTION AND STABILITY OF DAES

In this section we briefly review the relevant results from

the existence theory of switched DAEs and introduce the

necessary concepts. We begin by recalling some results on

time-invariant DAEs.

Consider a linear time-invariant DAE of the form

Eẋ = Ax, (2)

where E,A ∈ R
n×n. By C(E,A) we denote the consistency
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space of (2) given by

C(E,A) :=
{

x0 ∈R
n : ∃x ∈C1([0,∞),Rn) with x(0) = x0

which solves (2)
}

.

In the following we assume that the matrix pencil (sE −A)
defining (2) is regular, i.e. det(sE −A) is a nonzero poly-

nomial. This ensures that C(E,A) 6= /0 and ∀x0 ∈ C(E,A) the

solution of (2) is unique [6, Theorem 2.12].

Regular DAEs can be brought into so-called quasi-

Weierstraß form [15], [1]:

Theorem 1 (Quasi-Weierstraß form): If (2) is regular,

then there exist invertible matrices S,T ∈ R
n×n such that

SET =

(

I 0

0 N

)

, SAT =

(

J 0

0 I

)

,

where N,J are square matrices, N is nilpotent and the

partitioning of both matrices is the same.

Note that the quasi-Weierstraß form is not the Weier-

straß canonical form since we do not assume that the

matrices N,J are in a Jordan canonical form.

The quasi-Weierstraß form provides a decoupling of (2)

into a purely differential and a purely algebraic part. More-

over, the matrices S and T are real and can be efficiently

computed via Wong sequences [15], [19].

Using T from Theorem 1 we introduce the so-called flow

matrix Ad

Ad := T

(

J 0

0 0

)

T−1
. (3)

The importance of Ad lies in the following result [7,

Lemma 3], [14]:

Lemma 1: Any solution of (2) with x(0) = x0 ∈C(E,A), is

also a solution of

ẋ = Adx , x(0) = x0. (4)

A further important object is the consistency projector

Π(E,A), defined by

Π(E,A) := T

(

I 0

0 0

)

T−1
. (5)

We note that Π(E,A) is a reducing projection for Ad and we

have

AdΠ(E,A) = Π(E,A)A
d = Ad

. (6)

It can be shown, [15], that the consistency projector does

not depend on the matrices T and S, which bring (2) into

quasi-Weierstraß form.

Switched DAEs

For our analysis of switched DAEs we restrict ourselves

to piecewise constant switching signals σ : [0,∞)→I . Note

that the notion of piecewise continuity includes in particular

that on each compact set K ⊂ [0,∞) the switching signals

have only finitely many discontinuities. This will be assumed

without further mention in the following.

Consider a switched linear DAE given by the constituent

systems (1) and a time-dependent, piecewise constant switch-

ing signal σ :

Eσ(t)ẋ = Aσ(t)x . (7)

The consistency spaces Ci := C(Ei,Ai) of the constituent

systems may not coincide. Thus it is natural to assume

that switching in (7) may lead to a jump of the state at

the switching instances. One of the possibilities to define a

concept of the solution of (7) is to treat a switched DAE as

a special case of a time-varying homogeneous DAE:

E(t)ẋ = A(t)x, (8)

where E and A are piecewise constant matrix functions and

to consider distributional solutions of (8) in sense of [15]. In

this case, solutions may include derivatives of discontinuities,

i.e. Dirac impulses. In our analysis jumps are permitted, but

impulses are an impediment to stability and thus excluded.

Let us denote the Euclidean norm by | · |, and the matrix

norm by ‖ · ‖.

Definition 1: [15, Def. 4.3.7] The zero solution of (8) is

called globally asymptotically stable (GAS) if for all initial

conditions x(0) = x0 the corresponding solution of (8), does

not contain Dirac impulses and it is

1) Stable: ∀ε > 0 ∃δ > 0: ∀x0: |x0| < δ it follows that

|x(t)|< ε .

2) Attractive: lim
t→∞

|x(t)|= 0 for all x0 ∈ R
n.

Note that for linear systems (8) the attractivity of the zero

solution implies its stability.

It is convenient to have an equivalent definition of GAS

in terms of comparison functions.

We write that f ∈ L , if f : R+ → R+ is continuous and

strictly decreasing to 0.

Lemma 2: The zero solution of (8) is GAS if and only if

there exists δ ∈L so that for all admissible initial conditions

x0 and for all t ≥ 0 it holds, that

|x(t)| ≤ δ (t)|x0|. (9)

Proof: ⇒: For all admissible x0 the solution of (8)

with an initial condition x(0) = x0 can be written in the form

x(t) = Φ(t)x0 for some Φ : R+ →R
n×n. Thus,

|x(t)| ≤ ‖Φ(t)‖|x0|

Since (8) is attractive, ‖Φ(t)‖ → 0, t → ∞. Otherwise there

would exist a sequence of times {ti} → ∞, i → ∞ and se-

quence of admissible states {xi
0}, |xi

0|= 1, so that |Φ(ti)x
i
0| ≥

C. Since the set {x ∈R
n : |x|= 1} is compact, there exists a

convergent sequence {x
ik
0 } → x∗. Then |Φ(t)x∗| ≥ C for all

t. Indeed, let ∃t∗: |Φ(t∗)x∗|<C, then due to construction of

x∗ for all ε < 0 there exist rε : |x∗− xrε |< ε and at the same

time |Φ(t∗)xrε | ≥ C, which contradicts to the continuous

dependence of (8) on initial data.

Thus, |Φ(t)x∗| ≥C for all t, which implied, that (8) is non-

attractive and we come to a contradiction. Define δ (t) :=
infτ≥t ‖Φ(τ)‖+ e−t . Clearly, δ ∈ L and we obtain (9).

”⇐” This is clear.

Our objective in this paper is to find conditions ensuring

the existence of a time-dependent switching signal, such

that the switched DAE with constituent systems (1) is

asymptotically stable. More precisely, we define the notion

of stabilizability of the switched DAE via time-dependent

switching as follows.

5976



Definition 2: A switched system given by (1) is called

stabilizable via time-dependent switching if there exists a

piecewise continuous switching signal σ :R+ →I such that

the equilibrium of (7) is globally asymptotically stable.

A characteristic of switched DAEs is that the solution may

exhibit Dirac impulses. However, such Dirac impulses have

to be ruled out to render the zero solution asymptotically sta-

ble according to Definition 1. The following result provides

a necessary and sufficient condition for the absence of Dirac

impulses [16, Section 3.3].

Theorem 2: All distributional solutions of (7) are impulse-

free and the solution of each constituent system (1) with

x(0) = x0 ∈R
n is given by

x(t) = eAd
i t Πix0, ∀t ∈ R+.

if and only if the following condition

Ei(1−Πi)Π j = 0 ∀i, j = 1, . . . ,m (10)

holds.

Remark 3: Note that for index one systems the condition

(10) is satisfied.

In what follows we assume that condition (10) holds.

Certainly, if we do not switch between all systems, a milder

condition can be required.

The above result can be used to construct the solution

of (7) corresponding to the switching signal σ . Let the

increasing sequence {ti} denote the points of discontinuity

of σ such that σ(t) = si ∈ I for t ∈ [ti, ti+1). Then the

solution of (7) with x(t0) = x0 can be written as

x(t) = e
Ad

si
(t−ti)Πsi

· e
Ad

ii−1
(ti−ti−1)Πsi−1

· · ·eAd
s1
(t1−t0)Πs1

x0, (11)

where t ∈ [ti, ti+1).

III. STABILIZATION VIA TIME-DEPENDENT SWITCHING

We shall now turn towards the main subject of this paper.

Our approach in this section is to relate the stabilizability

of a switched DAE to properties of solutions of associated

switched ODE approximations.

For each of the constituent systems (1) we define the ODE

approximation

ẋ = Aε
i x (12)

with the system matrix

Aε
i := Ad

i Πi −
1

ε
(I −Πi) = Ti

(

Ji 0

0 − 1
ε I

)

T−1
i . (13)

For the set of system matrices Aε
i we define the switched

linear ODE:

ẋ = Aε
σ(t)x (14)

The idea behind the additional term − 1
ε I in (13) is to

model a jump between the consistency spaces by continuous

but fast dynamics in the direction of the jump. The smaller ε
is chosen, the faster is the corresponding dynamics, resulting

in better approximations of the jump. More precisely, we

have the following relation between the solutions of the

constituent systems (1) and (12):

Lemma 4: For each constituent DAE (1) and the associ-

ated ODE (12) it holds that

(eAd
i tΠi − eAε

i t)x0 =−e−
t
ε (I−Πi)x0 (15)

for all t > 0 and x0 ∈R
n. In particular, for all t > 0

lim
ε→0

‖eAd
i tΠi − eAε

i t‖= 0 . (16)

Proof: Computing eAd
i tΠi we obtain

eAd
i tΠi = Tie

(

Ji 0

0 0

)

t

T−1
i Ti

(

Ii 0

0 0

)

T−1
i

= Ti

(

eJit 0

0 I

)(

Ii 0

0 0

)

T−1
i = Ti

(

eJit 0

0 0

)

T−1
i .

The expression (15) can now be obtained as follows

eAd
i tΠi − eAε

i t = Ti

(

0 0

0 −e−
1
ε t I

)

T−1
i =−e−

1
ε t(I−Πi).

Clearly, for every fixed t the last expression tends to zero as

ε → 0.

Having established the approximation for the constituent

systems we can now relate the impulse-free solutions of

the switched DAE (7) to the solutions of the corresponding

switched ODE (14). Let ΦDAE
σ (t) denote the solution of (7)

and let Φε
σ (t) denote the solution of (14) for the same

switching signal σ .

Lemma 5: For all admissible σ and for all t > 0 it holds

lim
ε→0

∥

∥ΦDAE
σ (t)−Φε

σ (t)
∥

∥= 0.

Proof: For any admissible switching signal σ and any

fixed t > 0 there exists a k such that tk+1 > t ≥ tk. Let τk−1 =
tk − tk−1 and τ ′k = t − tk such that t = τ ′k +τk−1 +τk−2 + . . .+
τ0. Then we have

ΦDAE
σ (t) = e

Ad
sk

τ ′k Πsk
· e

Ad
sk−1

τk−1Πsk−1
· · ·eAd

s0
τ0Πs0

, (17)

Φε
σ (t) = e

Aε
sk

τ ′k · e
Aε

sk−1
τk−1 · · ·eAε

s0
τ0 . (18)

According to equality (15) we have

eAd
i τ Πi = eAd

i τ Πi − eAε
i τ + eAε

i τ =−e−
τ
ε (I −Πi)+ eAε

i τ
.

Substituting this expression into (17) we obtain that

‖ΦDAE
σ (t)−Φε

σ (t)‖ can be represented as a finite sum of

terms, any of which has a multiplier of the form e−
p
ε for

some p > 0. Taking the limit for ε → 0, we obtain the claim

of the lemma.

Now we are going to state one of the main results which

shows that the stabilizability of the switched DAE can be

verified by analyzing the corresponding switched ODE (14).

In the following we denote the solutions of (7) and (14),

corresponding to an initial condition x0 and a switching

signal σ at time t by φ(t,x0,σ) and φε (t,x0,σ), respectively.
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Theorem 3: Assume there exist ε0 > 0 and s > 0 so that

for all 0 < ε < ε0 there exists a periodic switching signal σε

with period s such that

|φε(s,x0,σε)| ≤
1

2
|x0|, ∀x0 ∈R

n
.

Moreover, assume there exists td > 0 such that for all ε ∈
(0,ε0), for any two subsequent switches of σε it holds |tε

i −
tε
i+1| ≥ td . Then (7) is stabilizable via σε∗ for some ε∗ ∈
(0,ε0).

Proof: Let the assumptions of the theorem hold. Using

(15) we have for all x,y ∈R
n the following estimate

|eAd
i tΠix− eAε

i ty|= |(eAd
i tΠi − eAε

i t)x+ eAε
i t(x− y)|

= |− e−
t
ε (I−Πi)x+ eAε

i t(x− y)|

≤ e−
t
ε ‖I−Πi‖|x|+ ‖eAε

i t‖|x− y|. (19)

Pick any ε ∈ (0,ε0).
Due to the semigroup property it holds for any x0 ∈ R

n

φ(tε
i+1,x0,σε ) = φ(tε

i+1 − tε
i ,φ(t

ε
i ,x0,σε),σε (·+ tε

i ))

and

φε(t
ε
i+1,x0,σε ) = φε (t

ε
i+1 − tε

i ,φε (t
ε
i ,x0,σε),σε (·+ tε

i )).

Pick any T > 0 and denote by {tε
i } the sequence of

switches of σε , and σε (t
ε
i ) = si = si(ε). We are going to

find an estimate of

|φ(tε
i+1,x0,σε )−φε(t

ε
i+1,x0,σε)|

on the time span [0,T ].
Using (19) we obtain:

|φ(tε
i+1,x0,σε )−φε(t

ε
i+1,x0,σε )|

= |eAd
si
(tε

i+1−tε
i )Πsi

φ(tε
i ,x0,σε )− e

Aε
si
(tε

i+1−tε
i )φε(t

ε
i ,x0,σε)|

≤ e−
tε
i+1

−tε
i

ε ‖I−Πsi
‖|φ(tε

i ,x0,σε)|

+ ‖e
Aε

si
(tε

i+1−tε
i )‖|φ(tε

i ,x0,σε)−φε(t
ε
i ,x0,σε )|

≤ Le−
td
ε |x0|+M|φ(tε

i ,x0,σε )−φε(t
ε
i ,x0,σε)|,

where the constants L and M do depend neither on ε nor on

the sequence {ti} and are chosen so that

‖I−Πsi
‖|φ(tε

i ,x0,σε )|

≤
m

sup
k=1

‖I−Πk‖ · sup
τ∈[0,T ],ε∈(0,ε0)

‖φ(τ, ·,σε )‖|x0| := L|x0|

and

sup
t∈[td ,T ]

‖e
Aε

si
t‖ ≤ ‖Tsi

‖‖T−1
si

‖ sup
t∈[td ,T ]

∥

∥

∥

∥

∥

(

eJsi
t 0

0 e−
1
ε t I

)∥

∥

∥

∥

∥

≤ ‖Tsi
‖‖T−1

si
‖ sup

t∈[td ,T ]

(‖eJsi
t‖+ ‖e−

1
ε t I‖)

≤
m

sup
k=1

(‖Tk‖‖T−1
k ‖ sup

t∈[td ,T ]

(‖eJkt‖+ 1)) =: M.

Since |φ(tε
0 ,x0,σε)−φε (t

ε
0 ,x0,σε)|= 0, we continue with the

above estimates to obtain for all x0 ∈ R
n

|φ(tε
i+1,x0,σε)−φε(t

ε
i+1,x0,σε )| ≤ L

i

∑
j=0

M je−
td
ε |x0|. (20)

According to the assumptions of the theorem there exists

s > 0 such that |φε (s,x0,σε )|<
1
2
|x0| for all ε ∈ (0,ε0).

Using (20) one can find ε∗ < ε0, so that

|φ(s,x0,σε∗)−φε∗(s,x0,σε∗)|<
1

4
|x0|.

And thus via the triangle inequality we have:

|φ(s,x0,σε∗)| ≤
3

4
|x0|, ∀x0 ∈R

n
.

This implies, that (7) is stabilizable via σε∗ .

The above result establishes that the stabilizability of the

switched DAE can be shown by considering the stabilizabil-

ity of corresponding switched ODEs.

Remark 6: Note that the result requires the existence of

a certain “common minimum dwell-time” td for all approx-

imating ODEs with small enough ε .

Remark 7: For the stabilization of the switched DAE we

can use the same switching signal σε∗ that stabilizes one of

the approximating switched ODEs.

The above theorem helps to prove a less precise but more

handy and in particular necessary and sufficient criterion for

the stabilizability of switched DAEs.

Theorem 4: The following statements are equivalent:

1) The switched linear DAE (7) is stabilizable via a time-

dependent switching signal.

2) The switched linear DAE (7) is stabilizable via the

periodic switching signal σp.

3) There exists an ε0 > 0 so that the switched ODE (14) is

stabilizable via the (same) periodic switching signal σp

for all 0 < ε < ε0, uniformly w.r.t. ε: ∃s > 0, s.t. for

all ε ∈ (0,ε0)

|φε(s,x0,σp)| ≤
1

2
|x0|,∀x0 ∈R

n
.

Proof: 2⇒1 is trivial.

1⇒2: Let (7) be stabilizable via time-dependent switching.

According to Lemma 2 there exist a switching signal σ and

ζ ∈ L so that

|ΦDAE
σ (t)x0| ≤ ζ (t)|x0| (21)

for all initial conditions x0 and for all t ≥ 0.

Since ζ ∈L , there exists a time T > 0, so that ζ (T ) = 1
2

and we have for all x0 ∈ R
n

∣

∣ΦDAE
σ (T )x0

∣

∣≤
1

2
|x0|. (22)

In particular, ‖ΦDAE
σ (T )‖ ≤ 1

2
. Now consider the periodic

signal σp defined by the formula

σp(t) = σ(t mod T ).

For this control we have
∣

∣

∣
ΦDAE

σp
(kT )x0

∣

∣

∣
≤

1

2k
|x0|, (23)
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and thus σp stabilizes the system (7).

2⇒3: Let σp be periodic with the period T and stabilize

the system (7). Then there exists a k > 0, so that

∥

∥

∥
ΦDAE

σp
(kT )

∥

∥

∥
≤

1

2
.

The triangle inequality implies
∥

∥

∥
Φε

σp
(kT )

∥

∥

∥
≤
∥

∥

∥
Φε

σp
(kT )−ΦDAE

σp
(kT )

∥

∥

∥
+
∥

∥

∥
ΦDAE

σp
(kT )

∥

∥

∥
. (24)

By Lemma 5 there exists an ε0 > 0 so that for all ε ≤ ε0 it

holds
∥

∥

∥
Φε

σp
(kT )−ΦDAE

σp
(kT )

∥

∥

∥
≤

1

4
.

From (24) we obtain that
∥

∥Φε
σp
(kT )

∥

∥≤ 3
4

for all ε ≤ ε0 and

consequently the following estimate holds

∣

∣

∣
Φε

σp
(wkT )x0

∣

∣

∣
≤

(

3

4

)w

|x0| . (25)

Thus σp stabilizes (14) for all ε ≤ ε0 uniformly w.r.t. ε .

3⇒2: follows from Theorem 3.

Note, that we require that the switched ODEs considered

are stabilizable via the same periodic switching signal σp for

all ε ∈ (0,ε0). In the following subsections we shed some

light on the nature of this condition by first considering an

example that illustrates the necessity of this condition. In

the subsequent subsection we consider a class of systems

for which this condition holds naturally.

A. Counterexample

We are going to construct a switched DAE whose trajec-

tories (of most initial conditions) diverge for all admissible

switching signals. The corresponding approximations (14)

are uniformly periodically stabilizable for all ε ∈ (0,ε0) and

small enough ε0, but via different stabilizing signals.

Consider the system Σ1 = (E1,A1) with

E1 :=

(

1 −1

0 0

)

A1 :=

(

1 −1

1 0

)

and the system Σ2 = (E2,A2) with

E2 :=

(

1 1

0 0

)

A2 :=

(

1 1

0 −1

)

.

Their flow matrices and consistency projectors are as follows:

Π1 = Ad
1 =

(

0 0

−1 1

)

, Π2 = Ad
2 =

(

1 1

0 0

)

.

Figure 1 shows a typical trajectory of the switched DAE

given by Σ1 and Σ2 for the initial value x0 = (1,0)T . It can

be easily shown, that the solution of the switched DAE is

divergent for any initial state, which does not lie in kerΠ1 ∪
kerΠ2 and for any switching signal.

Now consider the corresponding approximations of the

form (14) with

Aε
1 = Ad

1Π1 −
1

ε
(I −Π1) =

(

− 1
ε 0

−1− 1
ε 1

)

Fig. 1. Typical trajectory of a switched DAE from Section III-A

and

Aε
2 = Ad

2Π2 −
1

ε
(I −Π2) =

(

1 1+ 1
ε

0 − 1
ε

)

.

Consider the periodic signal σε of period 2ε , defined by

σε(t) =

{

1, t ∈ [0,ε),
2, t ∈ [ε,2ε).

Denote

Mε := eAε
2ε eAε

1ε =

(

eε−1 − (eε − e−1)2 eε(eε − e−1)
−e−1(eε − e−1) eε−1

)

.

The state of the system (14) at time 2εk, corresponding

to σε is given by

φε(2εk,x0,σε ) = Mk
ε x0.

Define yε(k) := φε (k2ε,x0,σε). We obtain a discrete-time

system

yε(k) = Mε yε(k− 1). (26)

It is easy to compute, that

M0 ≈

(

−0.0316970 0.6321206

−0.2325442 0.3678794

)

and

Spec(M0)≈ {0.1680912± 0.3272317i}.

This means, that ρ(M0) < 1. Since the eigenvalues of a

matrix depend continuously on its entries (see, e.g. [13,

Section A.4, p. 456]), we obtain, that ρ(Mε) < 1 for ε ∈
(0,ε0) for small enough ε0.

This immediately implies, that (26) is stable for small

enough ε and thus σε , ε ∈ (0,ε0) stabilizes (14) uniformly

w.r.t. ε .

Note that the period of σε as well as the time between

switches tend to 0 as ε → 0, thus, the conditions of Theo-

rem 3 are violated.
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B. Commutative constituent systems

In this subsection we consider the special case of switched

DAEs with commuting flow matrices Ad
i . As will be shown

below, the requirement that all approximating switched

ODEs are stabilizable via the same periodic switching signal

is already implied by periodic stabilization of an approximat-

ing ODE for certain ε0.

Lemma 8: Let Ad
i , i = 1, . . . ,m commute pairwise. If (14)

is stabilizable via the periodic switching signal σp for a

certain ε0, then it is stabilizable via the same switching signal

σp, uniformly w.r.t. ε ∈ (0,ε0).
Proof: Let Ad

i , i = 1, . . . ,m commute. Then from (13)

it follows that also Aε
i , i = 1, . . . ,m commute for all ε .

Now let (14) be stabilizable via the periodic switching

signal σp.

Define I j(t) = µ({s ≤ t : σp(s) = j}), where µ is the

Lebesgue measure.

For t = ∑k
i=1 τi and all x0 ∈ R

n we have

φε(t,x0,σp) = e
Aε

sk
τk · · ·eAε

s1
τ1 x0

= e
Aε

sk
τk · · ·eAε

s1
τ1e−A

ε0
s1

τ1 · · ·e−A
ε0
sk

τk e
A

ε0
sk

τk · · ·eA
ε0
s1

τ1x0

= e∑k
i=1(A

ε
si
−A

ε0
si
)τie

A
ε0
sk

τk · · ·eA
ε0
s1

τ1x0

= e∑m
j=1(A

ε
j−A

ε0
j )I j (t)eA

ε0
sk

τk · · ·eA
ε0
s1

τ1 x0

=
m

∏
j=1

e
(Aε

j−A
ε0
j )I j(t)φε0

(t,x0,σp). (27)

From (13) we see that

Aε
j −A

ε0
j =

(

1

ε0

−
1

ε

)

(I−Π j).

Due to this inequality and since 1
ε0
− 1

ε < 0, we obtain:

‖
m

∏
j=1

e
(Aε

j−A
ε0
j )I j(t)‖ ≤

m

∏
j=1

‖e
( 1

ε0
− 1

ε )(I−Π j)I j(t)‖

=
m

∏
j=1

‖Tje

(

0 0

0 I

)

( 1
ε0
− 1

ε )I j(t)

T−1
j ‖

=
m

∏
j=1

‖Tj

(

I 0

0 e
( 1

ε0
− 1

ε )I j(t)

)

T−1
j ‖

=
m

∏
j=1

‖Π j + e
( 1

ε0
− 1

ε )I j(t)(I−Π j)‖

≤
m

∏
j=1

(‖Π j‖+ ‖I−Π j‖) =: K,

with constant K.

Now from (27) we obtain

|φε(t,x0,σp)| ≤ K|φε0
(t,x0,σp)|, ∀x0 ∈ R

n
.

Take s s.t. |φε0
(s,x0,σp)| ≤

1
2K

|x0|. We obtain

|φε (s,x0,σp)| ≤
1

2
|x0|, ∀x0 ∈ R

n
,

which immediately implies that σ stabilizes (14) for all ε ∈
(0,ε0), uniformly w.r.t. ε .

IV. CONCLUSIONS

In this paper we investigated the stabilizability of switched

DAE systems. We show that the stabilizability of the

switched DAE can be inferred from stabilizability properties

of an approximating switched ODE. Our two main results

show that the approximating switched ODE has to be sta-

bilizable in a uniform sense. A counterexample establishes

that these additional requirements cannot be dropped. For a

certain class of systems our conditions are not restrictive.

The relations between the stabilizability of switched DAEs

and that of switched ODEs allow to utilize conditions for

stabilization of switched ODEs, where a number of results

has been obtained. Of particular interest in this regard may

be the relation to results on quadratic stabilization obtained

for switched ODEs.
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Birkhäuser, 2000.
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