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Abstract— This paper develops tools to construct Lyapunov
functions establishing integral input-to-state stability (iISS) and
input-to-state stability (ISS) for several classes of nonlinear
parabolic equations. Using these constructions and an infinite-
dimensional iISS small-gain theorem we provide a stability
criterion for interconnections of iISS parabolic systems. We
show that for interconnections of partial differential equations
it is essential to choose right state and input spaces, especially
for iISS subsystems which are not ISS.

I. INTRODUCTION

Input-to-state stability (ISS) unified into one framework
two different types of stable behavior: asymptotic stability
and input-output stability [22]. Within ISS theory an effec-
tive method for study of interconnected systems has been
developed, on the basis of Lyapunov methods and small-gain
arguments [14]. Nevertheless, saturation and limitations in
actuation and processing rates, which are often encountered
in the real-world systems, prevent these systems of being
ISS, since the state of such systems stays bounded as long
as the magnitude of the applied inputs remains below a
specific threshold, but becomes unbounded when the input
magnitude exceeds the threshold. However, these systems
often possess a weaker stability property, called integral
input-to-state stability (iISS) [21], [2]. Nowadays Lyapunov
and small-gain theory for iISS and iISS-like systems are as
powerful as its ISS counterparts [2], [8], [11], [1], [15], [9].

Recently a development of an ISS and iISS theory for
partial differential equations (PDEs) has been started. In [13],
[4], [5], [16], ISS of infinite-dimensional systems

ẋ(t) = Ax(t)+ f (x(t),u(t)), x(t) ∈ X ,u(t) ∈U (1)

has been studied via methods of semigroup theory [12],
[3]. Here the state space X and the space of input values
U are Banach spaces, A : D(A) → X is the generator of
a C0-semigroup over X . Many classes of evolution PDEs,
such as parabolic and hyperbolic equations are of this kind
[7], [3]. As in the case of finite-dimensional systems [22],
existence of an ISS Lyapunov function is sufficient for
ISS of (1) (see [4]). This motivated the results in [4] on
constructions of ISS Lyapunov functions for a class of
parabolic systems belonging to (1). More direct approach
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to the construction of Lyapunov functions for some classes
of nonlinear parabolic and linear time-varying hyperbolic
systems has been proposed in [17], [20]. In [13] and [16],
systems (1) with a sector-bounded nonlinearity f have been
investigated via frequency-domain methods.

To the best of the authors’ knowledge, except for time-
delay systems, the study devoted to Lyapunov functions for
iISS of infinite-dimensional systems has been started in [18],
where equivalence of iISS and uniform global asymptotic
stability for bilinear distributed parameter systems has been
shown. The second result in [18] is an extension to bilinear
systems over Hilbert spaces of a method from [21] for
construction of iISS Lyapunov functions for bilinear ordinary
differential equations (ODEs).

The abstract small gain type theorem proposed in [15]
includes infinite-dimensional systems, but the applications of
this framework to PDEs are not addressed. In [4], [5], ISS of
large scale systems whose subsystems are in the form of (1)
has been studied and the ISS small gain theorem, already
available for finite-dimensional systems (see [14], [6]) has
been extended to the infinite-dimensional systems. However,
the method does not accommodate iISS subsystems which
are not ISS.

This paper studies stability of interconnections of two
parabolic systems, each of which is of the form

∂x
∂ t

= c
∂ 2x
∂ l2 + f (x(l, t), ∂x

∂ l (l, t),u(l, t)), ∀t > 0, (2)

where l ∈ (0,L), x(l, t) ∈R. This class of systems (2) allows
more general functions f than the class considered in [4],
[18], and possesses systems, which are not ISS. The primary
goal of this paper is to accomplish an iISS small gain
theorem [11], [9], originally proved for finite-dimensional
systems, in the infinite-dimensional setting. In contrast to
the small-gain theorem from [4], we require ISS property
only from one subsystem and not from both of them; the
other subsystem may be only iISS.

When working with PDEs, it is crucial to choose the state
space in a right way. In particular, it is quite hard to find an
iISS parabolic system whose state and input spaces are both
Lp-spaces, while such difficulties do not arise in ISS systems.
To address this issue, this paper reexamines constructions of
iISS and ISS Lyapunov functions for parabolic systems de-
veloped in [4], [18], and actively exploits Sobolev spaces as
state spaces. For interconnections of PDE systems additional
difficulties arise since we need not only to choose right state
and input spaces for every subsystem, but also to match them
with the state and input spaces for other subsystems. Last
but not least, incompatibility of spaces in the time domain,
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which is crucial for interconnections of ODE systems, is
as important for PDE systems. All these issues make study
of interconnections of iISS infinite-dimensional systems a
challenging problem, which we solve here for some classes
of parabolic systems in one-dimensional spatial domain.

This paper does not contain the proofs of the presented
results and is a preliminary version of the paper [19]. For
the proofs as well as for detailed discussions of results please
consult [19].

Notation
We define R+ := [0,∞), and the symbol N denotes the

set of natural numbers. By C(R+,Y ) we denote the space
of continuous functions from R+ to Y , equipped with the
standard sup-norm. We use the following function spaces:
• Ck

0(0,L) is a space of k times continuously differentiable
functions f : (0,L)→ R with a support compact in (0,L).

• Lp(0,L), p ≥ 1 is a space of p-th power integrable func-

tions f : (0,L)→ R with ‖ f‖Lp(0,L) =
(∫ L

0 | f (l)|pdl
)1/p

.

• W k,p(0,L) is a Sobolev space of functions f ∈ Lp(0,L),
which have weak derivatives of order ≤ k, all of which
belong to Lp(0,L). Norm in W k,p(0,L) is defined by

‖ f‖W k,p(0,L) =
(∫ L

0 ∑1≤s≤k

∣∣∣ ∂ s f
∂ ls (l)

∣∣∣p dl
)1/p

.

• W k,p
0 (0,L) is a closure of Ck

0(0,L) in the norm
of W k,p(0,L). We endow W k,p

0 (0,L) with a norm

‖ f‖
W k,p

0 (0,L)
=
(∫ L

0

∣∣∣ ∂ k f
∂ lk (l)

∣∣∣p dl
)1/p

, equivalent to the norm

‖ · ‖W k,p(0,L) on W k,p
0 (0,L), see, [7, p.8].

• Hk(0,L) =W k,2(0,L), Hk
0(0,L) =W k,2

0 (0,L).
To define and analyze stability properties we use so-called

comparison functions

P := {γ ∈C(R+,R+) | γ(0) = 0, γ(r)> 0 for r > 0}
K := {γ ∈P | γ is strictly increasing}
K∞ := {γ ∈K | γ is unbounded}
L := {γ : R+→ R+ | γ is continuous and strictly

decreasing with lim
t→∞

γ(t) = 0}
K L := {β : R+×R+→ R+ | β is continuous,

β (·, t) ∈K , ∀t ≥ 0, β (r, ·) ∈L , ∀r > 0}
II. PROBLEM FORMULATION

Consider the system (1) and assume throughout the paper
that X and U are Banach spaces and that input functions
belong to the space C(R+,U). Let also T be a semigroup
generated by A from (1). Under (weak) solutions of (1) we
understand solutions of the integral equation

x(t) = T (t)x(0)+
∫ t

0
T (t− s) f (x(s),u(s))ds, ∀t ∈ [0,τ] (3)

belonging to C([0,τ],X) for some τ > 0.
We use the following assumption concerning nonlinearity

f throughout the paper
Assumption 1: Let f : X×U→ X be Lipschitz continuous

on bounded subsets of X , uniformly with respect to the
second argument, i.e. ∀C > 0 ∃K(C) > 0, such that ∀x,y :
‖x‖X ≤C, ‖y‖X ≤C, ∀v ∈U , it holds that

‖ f (y,v)− f (x,v)‖X ≤ K(C)‖y− x‖X . (4)

Let also f (x, ·) be continuous for all x ∈ X .
Since the inputs belong to C(R+,U), Assumption 1 en-

sures that the weak solution of (1) exists and is unique, ac-
cording to a variation of a classical existence and uniqueness
theorem [3, Proposition 4.3.3].

Let φ(t,φ0,u) denote the state of a system (1), i.e. the
solution to (1), at moment t ∈ R+ associated with an initial
condition φ0 ∈ X at t = 0, and input u ∈C(R+,U). Next we
introduce stability properties for the system (1).

Definition 1: System (1) is globally asymptotically stable
at zero uniformly with respect to state (0-UGASs), if ∃β ∈
K L , such that ∀φ0 ∈ X , ∀t ≥ 0 it holds

‖φ(t,φ0,0)‖X ≤ β (‖φ0‖X , t). (5)
To study stability properties of (1) with respect to external

inputs, we use the notion of input-to-state stability [4]:
Definition 2: System (1) is called input-to-state stable

(ISS), if there exist β ∈K L and γ ∈K : ∀φ0 ∈ X , ∀u ∈
C(R+,U) and ∀t ≥ 0 it holds that

‖φ(t,φ0,u)‖X ≤ β (‖φ0‖X , t)+ γ( sup
s∈[0,t]

‖u(s)‖U ). (6)
If the system is not ISS, it may still have some sort of

robustness. Thus we introduce another stability property
Definition 3: System (1) is called integral input-to-state

stable (iISS) if there exist α ∈K∞, µ ∈K and β ∈K L
such that the inequality

α(‖φ(t,φ0,u)‖X )≤ β (‖φ0‖X , t)+
∫ t

0
µ(‖u(s)‖U )ds (7)

holds ∀φ0 ∈ X , ∀u ∈C(R+,U) and ∀t ≥ 0.
The following defines a useful notion for studying iISS.
Definition 4: A continuous function V : X→R+ is called

an iISS Lyapunov function, if ∃ψ1,ψ2 ∈K∞, α ∈P , σ ∈K :

ψ1(‖x‖X )≤V (x)≤ ψ2(‖x‖X ), ∀x ∈ X (8)

and system (1) satisfies

V̇u(x)≤−α(‖x‖X )+σ(‖u(0)‖U ) (9)

for all x ∈ X and u ∈C(R+,U), where

V̇u(x) = lim
t→+0

1
t
(V (φ(t,x,u))−V (x)). (10)

Furthermore, if lim
τ→∞

α(τ) = ∞ or liminf
τ→∞

α(τ) ≥ lim
τ→∞

σ(τ)

holds, V is called an ISS Lyapunov function.
We write V̇ instead of V̇u(x) when it is clear along which

solutions the derivative is taken.
Proposition 1 (Prop. 1, [18]): If there exist an iISS (resp.

ISS) Lyapunov function for (1), then (1) is iISS (resp. ISS).
As a rule a construction of a Lyapunov function is the

only realistic way to prove ISS/iISS of finite-dimensional
systems. In the next sections we propose a method for
constructing iISS and ISS Lyapunov functions for subclasses
of a parabolic equation (2). Then we show how to construct
the Lyapunov functions for systems of PDEs from the infor-
mation about Lyapunov functions of subsystems by means
of an small-gain approach.

238



III. ISS LYAPUNOV FUNCTIONS FOR A CLASS OF
NONLINEAR PARABOLIC SYSTEMS: SOBOLEV STATE

SPACE

The purpose of this section is to develop a Lyapunov-type
characterization of ISS for PDEs in (2). In several papers
such characterizations for parabolic systems whose state
space is an Lp space have been provided [17], [4]. However,
as we will see in Section VII the iISS systems in many cases
cannot have the Lp space both as an input and state space.
Since our final goal is to consider interconnections of iISS
and ISS systems, we need to have the constructions of ISS
Lyapunov functions with Sobolev state spaces. This section
provides one of such constructions.

Consider a system

∂x
∂ t

= c
∂ 2x
∂ l2 + f

(
x(l, t), ∂x

∂ l (l, t)
)
+u(l, t), ∀t > 0 (11)

defined on the spatial domain (0,L) with the Dirichlet
boundary conditions

x(0, t) = x(L, t) = 0, ∀t ≥ 0. (12)

The next theorem gives a sufficient condition for ISS of (11)
w.r.t. the state space X =W 1,2q

0 (0,L), q∈N and certain types
of spaces U of input values.

Theorem 2: Suppose∫ L

0

(
∂x
∂ l

)2q−2 ∂ 2x
∂ l2 f

(
x, ∂x

∂ l

)
dl ≥

∫ L

0
η

((
∂x
∂ l

)2q
)

dl (13)

holds for all twice continuously differentiable x∈W 1,2q
0 (0,L)

with some convex continuous function η :R+→R and some
ε > 0 such that

α̂(s) :=
π2

q2L2 (c− ε)s+Lη

( s
L

)
≥ 0, ∀s ∈ R+. (14)

Then

V (x) =
∫ L

0

(
∂x
∂ l

(l)
)2q

dl = ‖x‖2q
W 1,2q

0 (0,L)
(15)

is an ISS Lyapunov function of (11)-(12) with respect to the
space U = L2q(0,L) of input values and U = W 1,2q

0 (0,L)∩
W 2,2q(0,L) as well.

According to (9), iISS allows the decay rate of V to be
much slower for large magnitude of state variables (since
α ∈P can be bounded) than ISS can allow. This indicates
that significantly different constructions for iISS Lyapunov
functions are needed. Next section is devoted to this question.

IV. iISS OF A CLASS OF NONLINEAR PARABOLIC
SYSTEMS: Lp STATE SPACE

Consider a system

∂x
∂ t

= c
∂ 2x
∂ l2 + f (x(l, t),u(l, t)), ∀t > 0 (16)

defined on the spatial domain (0,L) with

x(0, t)
∂x
∂ l

(0, t) = x(L, t)
∂x
∂ l

(L, t) = 0, ∀t ≥ 0 (17)

which represents boundary conditions of Dirichlet, Neumann
or mixed type. The state space for (16) we choose as X =

L2q(0,L) for some q ∈ N and input space we take as U =
L∞(0,L) and H1

0 (0,L).
Define the following ODE associated with (16) given by

ẏ(t) = f (y(t),u(t)), y(t),u(t) ∈ R. (18)

The next theorem provides a construction of an iISS Lya-
punov function for systems of the form (16).

Theorem 3: Suppose that W : y 7→ y2q satisfies

Ẇ (y) := 2qy2q−1 f (y,u)≤−α(W (y))+W (y)σ(|u|) (19)

for some α ∈K∞ ∪{0}, σ ∈K . Let any of the following
conditions hold:

1) x(0, t) = 0 for all t ≥ 0 or x(L, t) = 0 for all t ≥ 0.
2) α is convex and K∞.

Then an iISS Lyapunov function of (16) with (17) with
respect to the spaces of input values U = L∞(0,L) as well as
U = H1

0 (0,L) is given by

V (x) = ln(1+Z(x)), (20)

where Z is defined as

Z(x) =
∫ L

0
W (x(l))dl = ‖x‖2q

L2q(0,L)
. (21)

Furthermore, if α is convex and satisfies

liminf
s→∞

α(s)
s

= ∞, (22)

then V given above is an ISS Lyapunov system of (16) with
(17) with respect to U = L∞(0,L) as well as U = H1

0 (0,L).
The term W (y)σ(|u|) in (19) allows to analyze PDEs (16)
with bilinear or generalized bilinear terms which do not
possess ISS property.

Remark 4: One should choose an input space carefully.
First we verified iISS of the system (23) for the input
space L∞(0,L). For many applications this choice of input
space is reasonable and sufficient. However, in intercon-
nected systems the input to one system is a state of another
system. Thus, having L∞(0,L) as an input space of the first
subsystem automatically means that it is a state space of
another subsystem, which complicates the proof of its ISS,
since the constructions of Lyapunov functions for this choice
of state space are hard to find (e.g. how to differentiate
such Lyapunov functions?), if possible. As we have seen
in Section III, the choice of H1

0 (0,L) instead of L∞(0,L)
resolves the problem.

V. iISS OF A CLASS OF NONLINEAR PARABOLIC
SYSTEMS: SOBOLEV STATE SPACE

Instead of the L2q state space we used for characterizing
iISS in Section IV, in this section Sobolev state spaces are
used to establish iISS. We consider

∂x
∂ t

= c
∂ 2x
∂ l2 + f

(
x(l, t), ∂x

∂ l (l, t)
)
+

∂x
∂ l

(l, t)u(l, t) (23)

defined for (l, t)∈ (0,L)×(0,∞) with the Dirichlet boundary
conditions

x(0, t) = x(L, t) = 0, ∀t ≥ 0. (24)
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Taking X =W 1,2q
0 (0,L), q ∈ N we can verify the following.

Theorem 5: Suppose that (13) holds for all x ∈ X with
some convex continuous function η : R+→R and some ε ∈
R+ s. t. (14) holds. If ε > 0, then the function V given by

V (x) = ln(1+Z(x)), (25)

Z(x) =
∫ L

0

(
∂x
∂ l

)2q
dl = ‖x‖2q

W 1,2q
0 (0,L)

(26)

is an iISS Lyapunov function of (23)-(24) w.r.t. the space
U = L∞(0,L) of input values and U = H1

0 (0,L) as well.

VI. INTERCONNECTIONS OF iISS SYSTEMS

Consider the following interconnected system:

ẋi(t) = Aixi(t)+ fi(x1,x2,u), i = 1,2
xi(t) ∈ Xi, u ∈C(R+,U),

(27)

where Xi is a state space of the i-th subsystem, Ai : D(Ai)→
Xi is a generator of a strongly continuous semigroup over Xi.
Let X = X1×X2 which is the space of x = (x1,x2), and the
norm in X is defined as ‖·‖X = ‖·‖X1 +‖·‖X2 . In this section,
we assume that there exist continuous functions Vi : Xi→R+,
ψi1,ψi2 ∈K∞, αi ∈P , σi ∈K and κi ∈K ∪{0} for i= 1,2
such that

ψi1(‖xi‖Xi)≤Vi(xi)≤ ψi2(‖xi‖Xi), ∀xi ∈ Xi (28)

and system (27) satisfies

V̇i(xi)≤−αi(‖xi‖Xi)+σi(‖x3−i‖X3−i)+κi(‖u(0)‖U ) (29)

for all xi ∈ Xi, x3−i ∈ X3−i and u ∈C(R+,U), where the Lie
derivative of Vi corresponding to the inputs u ∈ C(R+,U)
and v ∈ PC(R+,X3−i) with v(0) = x3−i is defined by

V̇i(xi) = lim
t→+0

1
t
(Vi(φi(t,xi,v,u))−Vi(xi)). (30)

To present a small-gain criterion for the interconnected
system (27) whose components are not necessarily ISS, we
make use of a generalized expression of inverse mappings
on the set of extended non-negative numbers R+ = [0,∞].
For ω ∈K , define the function ω	: R+→R+ as ω	(s) =
sup{v ∈ R+ : s ≥ ω(v)}. Notice that ω	(s) = ∞ holds for
s ≥ limτ→∞ ω(τ), and ω	(s) = ω−1(s) holds elsewhere. A
function ω ∈ K is extended to ω: R+ → R+ as ω(s) :=
supv∈{y∈R+ :y≤s}ω(v). These notations are useful for present-
ing the following result succinctly.

Theorem 6: Suppose that

lim
s→∞

αi(s) = ∞ or lim
s→∞

σ3−i(s)κi(1)< ∞ (31)

is satisfied for i = 1,2. If there exists c > 1 such that

ψ
−1
11 ◦ψ12 ◦α

	
1 ◦ cσ1 ◦ψ

−1
21 ◦ψ22 ◦α

	
2 ◦ cσ2(s)≤ s (32)

holds for all s ∈ R+, then system (27) is iISS. Moreover, if
additionally αi ∈K∞ for i = 1,2, then system (27) is ISS.
Furthermore,

V (x) =
∫ V1(x1)

0
λ1(s)ds+

∫ V2(x2)

0
λ2(s)ds (33)

is an iISS (ISS) Lyapunov function for (27), where λi ∈K
is given for i = 1,2 by

λi(s) = [αi(ψ
−1
i2 (s))]ψ [σ3−i(ψ

−1
3−i1(s))]

ψ+1,∀s ∈ R+ (34)

with an arbitrary ψ ≥ 0 satisfying

ψ = 0 , if c > 2

ψ
− ψ

ψ+1 <
c

ψ +1
≤ 1 ,otherwise. (35)

It is straightforward to see that there always exists ψ ≥ 0
satisfying (35). It is also worth mentioning that the Lyapunov
function (33) is not in the maximization form, employed in
[4] for establishing ISS. The use of the summation form (33)
for systems which are not necessarily ISS is motivated by
the limitation of the maximization form and clarified in [10]
for finite-dimensional systems.

VII. EXAMPLES

This section exploits obtained results to analyze two
reaction-diffusion systems.

A. Example 1

Consider a nonlinear interconnected parabolic system

∂x1

∂ t
(l, t) =

∂ 2x1

∂ l2 (l, t)+ x1(l, t)x4
2(l, t),

x1(0, t) = x1(π, t) = 0;

∂x2

∂ t
=

∂ 2x2

∂ l2 +ax2−bx2

(
∂x2

∂ l

)2
+
(

x2
1

1+x2
1

)1
2
,

x2(0, t) = x2(π, t) = 0.

(36)

defined on the region (l, t) ∈ (0,π)× (0,∞). To fully define
the system we should choose the state spaces of subsystems.
We take X1 := L2(0,π) for x1(·, t) and X2 := H1

0 (0,π) for
x2(·, t) as in Table I (a). We are going to analyze UGASs
of (36). We divide the analysis into three parts. We omit
technical details of the argument. They can be found in [18].

1) The first subsystem is iISS: First we invoke Item 1 of
Theorem 3 with q = 1 to see that V1 defined by

V1(x1) := ln
(

1+‖x1‖2
L2(0,π)

)
(37)

is an iISS Lyapunov function for x1-subsystem. According
to the proof of Theorem 3 (see [19]), it holds that

V̇1 ≤−
2‖x1‖2

L2(0,π)

1+‖x1‖2
L2(0,π)

+2‖x2‖4
L∞(0,π). (38)

To replace L∞(0,π) with X2 = H1
0 (0,π) for the input space

used in (38), we recall Agmon’s inequality which results in

V̇1(x1)≤−
2‖x1‖2

L2(0,π)

1+‖x1‖2
L2(0,π)

+8‖x2‖4
H1

0 (0,π)
, (39)

and x1-subsystem is iISS w.r.t. the state space X1 = L2(0,π)
and the input space X2 = H1

0 (0,π).
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2) The second subsystem is ISS provided a < 0 and b≥ 0:
We invoke Theorem 2 with q = 1. As in (15), let

V2(x2) :=
∫

π

0

(
∂x2

∂ l

)2
dl = ‖x2‖2

H1
0 (0,π)

. (40)

Notice that x2-subsystem is of the form (11) with c = 1,
f (x2,

∂x2
∂ l ) = ax2−bx2(

∂x2
∂ l )

2. To arrive at (13), we obtain by
integration by parts∫ L

0

∂ 2x2

∂ l2

(
ax2−bx2

(
∂x2

∂ l

)2)
dl=−aV2(x2)−b

∫ L

0

∂ 2x2

∂ l2 x2

(
∂x2

∂ l

)2
dl

Due to x2(0, t) = x2(π, t) = 0 for all t ∈ R+, we have∫
π

0

∂ 2x2

∂ l2 x2

(
∂x2

∂ l

)2
dl =−

∫
π

0

∂x2

∂ l

(
2x2

∂x2

∂ l
∂ 2x2

∂ l2 +
(

∂x2

∂ l

)3)
dl

which implies that∫
π

0

∂ 2x2

∂ l2 x2

(
∂x2

∂ l

)2
dl =−1

3

∫
π

0

(
∂x2

∂ l

)4
dl. (41)

Define ∀s ∈ R+

η(s) =−as+
b
3

s2, α̂(s) = (1−a− ε)s+
b

3π
s2.

For b ≥ 0 η is convex and satisfies (13). The inequality in
(14) is achieved for ε = 1−a > 0 provided a < 1.

Hence, if a < 1 and b ≥ 0 hold, Theorem 2 with q = 1
shows that for ω ∈ (0,2(1− a)], the function V2 satisfies
(with ε = 1−a, see [19])

V̇2 ≤−2(1−a−ω

2
)V2(x2)−

2b
3π

V2(x2)
2+

1
ω
‖u2‖2

L2(0,π)
, (42)

where we denote u2 := (x2
1/(1+ x2

1))
1/2.

Since s 7→ s/(1+ s) is a concave function of s ∈ R+,
Jensen’s inequality yields∫

π

0

x2
1

1+ x2
1

dl ≤ π

(1/π)‖x1‖2
L2(0,π)

1+(1/π)‖x1‖2
L2(0,π)

≤
π‖x1‖2

L2(0,π)

1+‖x1‖2
L2(0,π)

.

Using this property in (42) we have

V̇2 ≤−2(1−a− ω

2
)‖x2‖2

H1
0 (0,π)

− 2b
3π
‖x2‖4

H1
0 (0,π)

+
π

ω

‖x1‖2
L2(0,π)

1+‖x1‖2
L2(0,π)

.
(43)

Therefore, V2 is an ISS Lyapunov function of x2-subsystem
with respect to the state space X2 = H1

0 (0,π) for x2(·, t) and
the input space X1 = L2(0,π) for x1(·, t).

Although property (43) is satisfactory for establishing
UGASs of the overall system (36), one can obtain another
estimate for V̇2, see [19].

3) Interconnection is UGASs: Now we collect the findings
of two previous subsections. Assume that a < 1 and b ≥
0. For the space X = L2(0,π)× H1

0 (0,π), the Lyapunov
functions defined as (37) and (40) for both subsystems satisfy
(28) with the K∞-functions ψ11 = ψ12 : s 7→ ln(1+ s2) and
ψ21 = ψ22 : s 7→ s2. Due to (39) and (43), we have (29) for

α1(s) =
2s2

1+ s2 , σ1(s) = 8s4, κ1(s) = 0

α2(s) = 2
(

1−a−ω

2

)
s2 +

2b
3π

s4, σ2(s) =
π

ω

s2

1+ s2, κ2(s) = 0

TABLE I
USEFUL SPACES FOR INTERCONNECTIONS WITH AN iISS SUBSYSTEM.

(a) Choice #1
State values Xi Input values Ui

iISS subsystem (i = 1) L2(0,L) H1
0 (0,L)

ISS subsystem (i = 2) H1
0 (0,L) L2(0,L)

(b) Choice #2
State values Xi Input values Ui

iISS subsystem (i = 1) H1
0 (0,L) H1

0 (0,L)
ISS subsystem (i = 2) H1

0 (0,L) H1
0 (0,L)

TABLE II
STANDARD SPACES FOR INTERCONNECTIONS OF ISS SUBSYSTEMS.

State values Xi Input values Ui
ISS subsystem (i = 1) Lp(0,L) Lq(0,L)
ISS subsystem (i = 2) Lq(0,L) Lp(0,L)

defined with ω ∈ (0,2(1−a)]. For these functions, condition
(32) holds for all s ∈ R+ if and only if

12c2π2

bω

(
s2

1+ s2

)
≤ 2s2

1+ s2 , ∀s ∈ R+ (44)

is satisfied. Thus, there exists c > 1 such that (32) holds
if and only if 6π2/b < ω holds. Combining this with ω ∈
(0,2(1−a)], a < 1 and b≥ 0, Theorem 6 establishes UGASs
of x = 0 for the whole system (36) when

a+
3π2

b
< 1, b≥ 0. (45)

Note that (31) is satisfied. Due to the boundary condi-
tions of x2, Friedrichs’ inequality ensures ‖x2(·, t)‖L2(0,π) ≤
‖x2(·, t)‖H1

0 (0,π)
. Thus, the UGASs guarantees the existence

of β ∈K L s.t. for all φ0 ∈ X = L2(0,π)×H1
0 (0,π) and all

t ∈ R+ it holds that

‖φ(t,φ0,0)‖L2(0,π)×L2(0,π)≤‖φ(t,φ0,0)‖X≤β (‖φ0‖X , t). (46)

B. Example 2

Consider

∂x1

∂ t
(l, t) =

∂ 2x1

∂ l2 (l, t)+
∂x1

∂ t
(l, t)x4

2(l, t),

x1(0, t) = x1(π, t) = 0;

∂x2

∂ t
=

∂ 2x2

∂ l2 +ax2−bx2

(
∂x2

∂ l

)2
+
(

x2
1

1+x2
1

)1
2
,

x2(0, t) = x2(π, t) = 0.

(47)

defined on the region (l, t) ∈ (0,π)× (0,∞). For (47), we
take X1 := H1

0 (0,π) and X2 := H1
0 (0,π) as in Table I (b).

1) The first subsystem is iISS: apply Theorem 5 to x1-
subsystem on X1 = H1

0 (0,π) by taking q = 1. Let V1(x1) be

V1(x1) := ln
(

1+‖x1‖2
H1

0 (0,π)

)
(48)

We can use η = 0, which is convex on R+. Let ε = c = 1.
Then Property (14) holds with α̂ = 0.
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The proof of Theorem 5 and Agmon’s inequality lead to

V̇1 ≤−
‖x1‖2

H1
0 (0,π)

1+‖x1‖2
H1

0 (0,π)

+4‖x2‖4
H1

0 (0,π)
. (49)

Hence, inequality (29) is obtained for i= 1, and the V1 in (48)
is an iISS Lyapunov function of x1-subsystem with respect
to the input space X2 = H1

0 (0,π).
2) The second subsystem is ISS: Since x2-subsystem of

(47) is identical with that of (36), if a < 1 and b≥ 0 holds,
the function V2 defined by (40) is an ISS Lyapunov function
for x2-subsystem of (47) and satisfies

V̇2 ≤−2(1−a− ω

2
)‖x2‖2

H1
0 (0,π)

− 2b
3π
‖x2‖4

H1
0 (0,π)

+
π

ω

‖x1‖2
H1

0 (0,π)

1+‖x1‖2
H1

0 (0,π)

.
(50)

This can be obtained from (43) since ‖x1‖H1
0 (0,π)

≥
‖x1‖L2(0,π) due to Friedrich’s inequality and s 7→ s

1+s is
strictly increasing for s > 0. This shows ISS of x2-subsystem
of (47) with respect to the state space X2 = H1

0 (0,π) and the
input space X1 = H1

0 (0,π).
3) Interconnection is UGASs: The above analysis for

system (47) yields (28) and (29) for i = 1,2, with functions
which are the same as those for (36) except for

α1(s) =
s2

1+ s2 , σ1(s) = 4s4. (51)

Again, condition (32) holds for all s∈R+ if and only if (44)
is satisfied. Hence, Theorem 6 establishes UGASs of x = 0
for the whole system (47) if (45) holds. The UGASs ensures
the existence of β ∈K L satisfying (46) for all φ0 ∈ X and
all t ∈ R+ in terms of X = H1

0 (0,π)×H1
0 (0,π).

VIII. CONCLUSION

For interconnected nonlinear parabolic systems a small-
gain criterion has been proposed together with a method to
construct Lyapunov functions of interconnected systems. We
emphasized the importance of a correct choice of state spaces
for iISS subsystems which are not ISS. In ISS literature
about parabolic systems [4], [17] the systems over Lp-spaces
(which is the simplest possible case) have been studied most
extensively. However, as indicated in [18], the presence of
a bilinear term in a PDE makes the Lp setting break down.
Indeed, pointwise multiplication of state and input variables
in PDEs defined on L2 state space cannot be bounded by the
product of the spatial L2-norm of the state and the spatial L2-
norm of the input, while this is true for norms in Euclidean
space in case of ODEs. Importantly, when two systems are
connected to each other, a choice of state and input and
spaces of one system affects the pair of the other systems.
Thus, the bilinearity makes the choice in Table II useless,
while the choice is often satisfactory for interconnections of
ISS subsystems. To be able to formulate interconnections
involving iISS subsystems as in Table I, this paper proposed
constructions of Lyapunov functions characterizing iISS of
parabolic systems with Sobolev state spaces, which are not

covered by ISS Lyapunov functions. It is worth mentioning
that different choices of input spaces leading to different
properties of a single system are demonstrated through an
example in [19].
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