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Abstract— In this paper we propose a novel optimal al-
location model for perennial plants. We consider not only
favorable for photosynthesis periods, but analyze the whole life
of a perennial plant. This provides more information about
strategies of a plant during transitions between favorable and
unfavorable seasons. One of predictions of our model is that
a plant can begin re-establishment of vegetative tissues some
time before the beginning of the favorable conditions, so as to
come into the better environmental conditions with a certain
amount of already developed vegetative tissues.

In the second part of the paper we extend the model by
assuming that a plant controls not only a distribution of
carbohydrates, but also a size of a seed. We provide sufficient
conditions under which the optimal strategy for a plant is to
produce as much seeds as possible. These results can be applied,
in particular, for colonizing species and plants living in open
environments.

Keywords: biological systems; optimal control; modeling;
perennial plants

I. INTRODUCTION

The pioneering work [1] gave rise to a new class of
mathematical models of plants, based on the methods of
optimal control theory. In these models it is assumed that
a plant can control itself in order to maximize its fitness
to environment, often identified with the mass of seeds
produced by a plant during its life.

The first models have been devoted to the development of
annual plants. In them it is assumed that a plant consists of
a number of compartments, at least of a vegetative compart-
ment (leaves, roots, stems) and reproductive compartment
(seeds and auxiliary tissues), but also can include storage and
defensive tissues. The basic model of this type [2] results in
a bang-bang transition from allocation to vegetative tissues
to allocation into seeds.

This model of an annual plant has been extended in
many directions. In particular, in [3] a model with multiple
vegetative compartments has been analyzed, in works [4],
[5] a model with additional physiological constraints has
been considered that results in periods of mixed growth
(where both vegetative and reproductive parts of a plant
grow simultaneously). The optimal allocation strategies in
stochastic environments have been investigated in particular
in [6]. Allocation to defensive tissues was encountered, to
cite a few, in [7], [8]. The overview of the early works in
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this field is provided in a paper [9]. For general overview of
the resource allocation in plants see [10] and [11].

In contrast to annual plants less attention has been devoted
to the modeling of optimal phenology of perennials. Usually
behavior of perennials is modeled in the following way
[12], [13], [14]: the life-time of a perennial plant is divided
into discrete seasons, which environmental conditions are
favorable to the photosynthesis. The model of a plant in
every season is continuous and is treated with the methods
used in annual plant models. To model the behavior of a
plant between seasons (when a weather is unfavorable) some
simple transition rules are used that show which parts of
compartments are saved during the season and which are
not. The solution of such problems is divided into two parts:
firstly the model on one season is solved using Pontryagin’s
Maximum Principle (see, e.g. [15]) and then one seeks a
solution of the whole model using dynamic programming
method.

Although these models provide interesting qualitative re-
sults of behavior of perennial plants, they have an important
disadvantage: a subtle qualitative behavior of a plant within
the season contrasts to the simple jump from the end of one
season to the beginning of the next one.

In this paper we propose a continuous-time model of a
perennial plant. This allows us to describe more precisely
the dynamics of a plant during seasons with unfavorable
for photosynthesis environmental conditions and to avoid
the introduction of additional parameters for description of
jumps between seasons. In particular one of predictions of
the model is that the plant begins to generate the vegetative
tissues not at the time when the environment conditions are
favorable for photosynthesis, but some time before, so as
to come into the suitable period with developed vegetative
tissues.

In the second part of the paper we investigate a trade-
off between size and number of seeds. A lot of attention is
devoted to this topic in the scientific literature. The basic
model has been proposed in a seminal work [16], where it
was assumed that the fitness of the plant is equal to the sum
of the fitnesses of the descendants. Since that this model has
been generalized in many directions (for a survey see [17]).
In this framework the optimal size is sought depending on
the properties of the fitness function. This makes possible
quite general treatment of size-number trade-offs, but the
questions how to formalize the dependency of the fitness on
size and number of seeds and how to find the properties
of the function that characterizes this dependency, remain
unsolved.

Our aim is to investigate the trade-offs between number
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and size of a seed in the context of the optimal allocation
models. Within this framework the fitness is properly for-
malized, and we can investigate the optimal size of a seed
depending on the properties of photosynthetic rate function,
and other physiological parameters of a plant that are more
distinct criteria than the abstract fitness. We provide the
analysis for the model developed in Section II of this paper,
but the results are valid also for a number of other optimal
allocation models.

We prove that, according to our model of a plant, if the
photosynthetic rate function is concave (that is, if rate of
photosynthesis per unit mass decays with increase of a size
of a plant), then the seeds have to be as small as possible.
This behavior is common in particular for the colonizing
species (see Section III-B).

The outline of the article is as follows: in Section II-A we
introduce the model of a perennial plant. In Section II-B we
provide its analysis, using Pontryagin’s Maximum Principle.
Then, in Section II-C we summarize the results of the model,
provide a general scheme of plant development and consider
some special cases (annual and monocarpic plants).

In Section III we consider a trade-off between size and
number of seeds. The results of the paper are discussed in
the Section III-B.

II. OPTIMAL ALLOCATION MODEL

A. Model description

Usually it is assumed that all the allocated photosynthate is
immediately used for construction of the tissues. In the mod-
els taking into account a presence of a storage compartment
a plant can also allocate the resources from the storage with
some maximal rate (depending on the mass of the storage).

Such a method ignores that a photosynthate is not immedi-
ately allocated to certain structures, but exists for some time
in a free state. We are going to take this effect into account
and assume that there exists an intermediate stage, when the
carbohydrates have already been photosynthesized, but have
not been permanently allocated to a given structure yet.

Let a plant consist of three parts: vegetative compartment,
reproductive compartment and nonstructural carbohydrates
(free glucose, starch etc.).

Let x1(t) be the mass of the vegetative compartment at
time t, x2(t) be the mass of the reproductive compartment at
time t, and x3(t) be the mass of nonstructural carbohydrates
at time t.

We model dynamics of a plant by the following equations:

ẋ1 = v1(t)g(x3)−µ(t)x1,
ẋ2 = (v(t)− v1(t))g(x3),
ẋ3 = ζ (t) f (x1)− v(t)g(x3)−ω(t)x3.

(1)

Here f (x1) shows the rate of photosynthesis of the plant
with the vegetative mass x1 in the optimal environmental
conditions, and g(x3) - the maximal rate of allocation of
nonstructural carbohydrates, if their mass is x3. It is natural
to assume that f and g are monotonically increasing and
f (0) = g(0) = 0.

The influence of a climate is modeled by three functions:
ζ : [0,T ]→ [0,1] and µ,ω : [0,T ]→ [0,∞).
• ζ (t) shows the dependence of the rate of photosynthesis

on the climate (ζ (t) = 0 if at time t no photosynthesis
is possible).

• µ(t) is the deconstruction rate of vegetative tissues per
unit mass at time t.

• ω(t) is the deconstruction rate due to external factors
(spoiling, grazing by animals etc.) of the storage parts
per unit mass at time t.

Note that photosynthesized carbohydrates firstly enlarge
the mass of nonstructural carbohydrates.

We assume that a plant can control the total allocation
rate with the control v(t) ∈ [0,1], and allocation rate to the
vegetative tissues v1(t)∈ [0,v(t)], consequently the allocation
rate to reproductive tissues at time t is v2(t) = v(t)− v1(t).

At the moment t = 0 a mass of the seed and all its
compartments is given a priori (the question of optimal mass
of a seed will be considered in Section III):

xi(0) = x0
i , i = 1,2,3. (2)

The seed dormancy is modeled as an ability of a plant
to choose the time of germination t0 ∈ [0,T ]. For simplicity
we assume that a seed cannot spoil, and it does not use any
resources for life-sustaining activities, thus:

xi(t0) = xi(0) = x0
i , i = 1,2,3. (3)

To model a mortality of a parental plant, we introduce
the function L̃ : [0,T ]→ [0,1]. L̃(t) shows the probability of
survival of a parental plant to the age of t.

Remark 1: We assume in this paper that mortality is only
age-dependent, and does not depend on the time and size of
a plant.
Since the time of germination may vary, it makes sense to
introduce the function Lt0 , defined by the relation Lt0(t) =
L̃(t0− t). In what follows we write for short L = Lt0 .

It is natural to assume that L is a non-increasing function
and that L(t) > 0 for all t ∈ [0,T ). Really, if L(t) ≡ 0 on
[T − ε,T ] for some ε > 0, then this means, that already at
the moment T −ε a plant will be dead, and we can consider
the optimal control problem on the time-period [0,T − ε].

We assume that a plant maximizes the expectation of a
total yield of seeds over the period:∫ T

t0
L(s)ẋ2(s)ds =

∫ T

t0
L(s)(v(s)− v1(s))g(x3(s))ds→max .

(4)
To achieve this aim, a plant may choose an appropriate

germination time t0 and controls v and v1 defined on [t0,T ].
We assume that the functions in the right hand side of

equations (1) are smooth enough to guarantee existence
and uniqueness of solutions of (1). Also we assume that
the system (1) is forward complete, that is, for all initial
conditions and all admissible controls the solution of (1)
exists for all time. From the biological viewpoint it means
that it is impossible to achieve endless yield in finite time.
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Also we assume, that a solution of the optimal con-
trol problem exists (1), (2), (4) in the class of piecewise-
continuous controls. In particular this excludes the Fuller’s
phenomenon (bang-bang controls with infinite number of
switches on the finite interval) [23]. For applications of our
model these assumptions are not restrictive.

B. Model analysis
For analysis of (1) we exploit Pontryagin’s Maximum

Principle (see, e.g. [15]). Note that we can drop the equation
for x2, since the other equations of (1) as well as the cost
functional (4) after substitution of ẋ2 do not depend on x2.

The Hamiltonian of (1), (4) is defined by:

H=p1(t)(v1(t)g(x3(t))−µ(t)x1(t))
+λ0L(t)(v(t)− v1(t))g(x3(t))
+p3(t)(ζ (t) f (x1(t))−v(t)g(x3(t))−ω(t)x3(t)) .

(5)

Here p1, p3 are so-called adjoint functions and λ0≥ 0. The
equations determining their dynamics will be given later.

To simplify the notation, we will frequently write in
equations simply p1, x2, etc. instead of p1(t), x2(t), if there
arises no ambiguity.

We rewrite expression (5) in a more suitable form

H=p3ζ (t) f (x1)−p1µ(t)x1+g(x3)(v1(t)(p1−λ0L(t))
+ v(t)(λ0L(t)− p3))− p3ω(t)x3.

(6)
Equations for the adjoint function p are as follows

ṗ1 = p1µ(t)− p3ζ (t) ∂ f
∂x1

(x1),

ṗ3 =− ∂g
∂x3

(x3)(v1(p1−λ0L(t))+v(λ0L(t)− p3))+p3ω(t).
(7)

The corresponding boundary conditions are

p1(T ) = p3(T ) = 0. (8)

If λ0 = 0, then from (8) and (7) we obtain that pi ≡ 0 on
[t0,T ], from which it follows that all the controls are possible.
Let λ0 > 0. We can take in this case λ0 = 1.

To obtain the values of v,v1, we solve the problem

H→max, 0≤ v≤ 1, 0≤ v1 ≤ v.

It is not hard to check that its solution is given by
1) If L(t)− p3(t)> 0, then v(t) = 1, and

v1(t) =

 v(t) if p1(t)−L(t)> 0,
0 if p1(t)−L(t)< 0,

∈ [0,v] if p1(t)−L(t) = 0.
(9)

2) If L(t)− p3(t) = 0, then

p1(t)−L(t)> 0 ⇒ v(t) = 1,v1(t) = v(t)
p1(t)−L(t) = 0 ⇒ v(t),v1(t) - EAC
p1(t)−L(t)< 0 ⇒ v(t) - EAC,v1(t) = 0

(10)

3) If L(t)− p3(t)< 0, then
• if p1(t)−L(t)≤ 0 then v(t) = v1(t) = 0.
• if p1(t)−L(t)> 0 then

p1(t)− p3(t)< 0 ⇒ v(t) = v1(t) = 0
p1(t)− p3(t) = 0 ⇒ v(t) - EAC,v1(t)=v(t)
p1(t)− p3(t)> 0 ⇒ v(t) = v1(t) = 1

(11)

Here the abbreviation EAC stands for ”every admissible
control”.

We introduce three main periods characterized by different
values of controls:
(V) Vegetative period: p1(t) > max{L(t), p3(t)}. In this

case v(t) = v1(t) = 1, that is the vegetative parts are
being constructed with the maximal rate.
Equations (7) in the vegetative period take form

ṗ1 = p1(t)µ(t)− p3(t)ζ (t)
∂ f
∂x1

(x1(t)),

ṗ3 =− ∂g
∂x3

(x3(t))(p1(t)− p3(t))+ω(t)p3.
(12)

(R) Reproductive period: L(t)> max{p1(t), p3(t)}. In this
case v(t) = 1, v1(t) = 0 and reproductive tissues are
being constructed with the maximal rate.
Equations (7) within this period take the form

ṗ1 = p1(t)µ(t)− p3(t)ζ (t)
∂ f
∂x1

(x1(t)),

ṗ3 =− ∂g
∂x3

(x3(t))(L(t)− p3(t))+ω(t)p3(t).
(13)

(S) Storage period: p3(t)> max{p1(t),L(t)}. In this case
v(t) = v1(t) = 0 and all allocated energy goes to
storage.
The corresponding equations (7) take the form

ṗ1 = p1(t)µ(t)− p3(t)ζ (t)
∂ f
∂x1

(x1(t)),
ṗ3 = ω(t)p3.

(14)

We are going to analyze these periods more deeply and
find out in what order these periods can arise in a life of a
plant. To this end we investigate equations (7) from the end
of the life of a plant.

Controls v and v1 maximize the value of (v1(p1−L(t))+
v(L(t)− p3)), therefore for optimal v,v1 it holds that

(v1(p1−L(t))+ v(L(t)− p3))≥ 0. (15)

Note that in case, when ω(t)≡ 0 (that is, if storage parts
cannot be destructed due to external factors) this inequality
and monotonicity of g imply that p3 is an non-increasing
function on [t0,T ].

Let us analyze the behavior of Lagrange multipliers pi and
values of controls at the neighborhood of the time T .

If the last period would be vegetative, then the equations,
governing the dynamics of p1, p3 would be (12). Due to
well-posedness of (12), and since the conditions (8) hold,
we obtain, that p1(t)≡ 0 and p3(t)≡ 0 in the neighborhood
of time T . Since L(t) > 0 for all t < T , we come to a
contradiction with an assumption that the last period is
vegetative. Analogously one can show that also the storage
period cannot be the last period of a plant’s life. This proves,
that the last period of a plant development is a reproductive
period.

From equations (15) and (7) using monotonicity of g and
inequality ω ≥ 0 we have that if for some τ ∈ [t0,T ] p3(τ)<
0, then p3(t)< 0 for all t ∈ [τ,T ], which contradicts to (8).
Thus, p3 ≥ 0 on [t0,T ]. Analogously one can prove that p1 ≥
0 on [t0,T ].

Now let us find out, what period can precede to the repro-
ductive period. According to equations (14) and due to ω ≥ 0
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we see, that p3 cannot decrease during the reproductive
period. Since L is a nonincreasing function, we see, that
starting in a reproductive period (p3 > L) we cannot obtain
p3 < L at the end of this period. This tells us that before
reproduction period the storage period is impossible.

If the climate conditions (functions µ and ζ ) are such
that p1(t) = L(t) for all t ∈ [ts, t1] for some ts < t1, then
according to (9) a plant can have the period with mixed
control v1 ∈ [0,v] for t ∈ [ts, t1]. Although this possibility
cannot be excluded in general, but such mixed controls can
arise only due to very specific climate conditions and we do
not separate it as a special period of plant life.

If p1(t)−L(t) is increasing from the left at t = t1, then one
can distinguish one more reproductive period [t1− s, t1) for
some s > 0. Throughout this paper we follow the agreement
to combine all such periods together with stages with mixed
controls between these periods into one reproductive period.

Let p1(t)−L(t) be decreasing. Then for some time interval
preceding to the reproductive period we have p1(t)> L(t)>
p3(t) and therefore on this time interval a plant has a
vegetative period. We call it period V.1, in contrast to
period V.2 characterized by relation p1(t)> p3(t)> L(t) (this
distinction will be useful for monocarpic plants).

There are 2 possibilities for the plant behavior before
period V.1: either it will have one more R-period (if p1
decreases lower than L(t) while it remains true that p3 <
L(t)), or it will exist t2 < t1: p3(t2) = L(t2). As mentioned
before, we neglect the possibility of mixed controls and
consider the case ṗ3(t2)< 0.

In this case period V.2 characterized by p1(t) > p3(t) >
L(t) precedes the period V.1. Although the allocation pattern
is the same in both periods V.1 and V.2, the distinction
between these periods is useful for the study of phenology
of monocarpic plants. To understand this difference let us
consider the case, when the nonstructural carbohydrates
cannot be deconstructed due to external factors (i.e. ω ≡ 0,
which implies, as was mentioned earlier, that p3 is non-
increasing) and the probability of survival remains constant
throughout the whole period (L ≡ const). This implies that
before period V.2 the reproduction periods are not possible
(p3 > L) and consequently the plant exploits monocarpic
strategy.

In the general case, when ω 6≡ 0 both periods R and S can
precede the V -period, or all the previous life of a plant can
consist of one vegetative period. In the first case a plant
possesses one more reproduction period, which has been
already analyzed. If before vegetative period there is no other
period, then the plant is annual.

Let now the S-period precedes to the V -period. Then there
exist t4, t3: t4 < t3 < t2, such that p1 increases on [t4, t3] (due
to the unfavorable climate conditions) and p1(t4) = p3(t4).
We separate period between t4 and t3 in the season V.2.1
(p1 > p3 > L(t), but p1 increasing), which distinctive feature
is that although the climate conditions are not comfortable
for photosynthesis a plant anyway allocates some part of
stored resources to the construction of the vegetative tissues,
so as to come into the better conditions with a certain amount

of already developed vegetative mass.
Now let there exist some r: p1(t)< p3(t) for all t ∈ [r, t4).

Then a plant enters a storage period.
If the climate conditions are unfavorable for all t < t4, that

is, p1(t)< p3(t) for all t ∈ [0, t4), then the first period of time
is only the storage of allocated photosynthate (this is hardly
possible because a seed has a possibility to stay this period
in dormancy). If it is not the case, then there exist some
moments t6, t5, t6 < t5 < t4, such that p1 is decreasing on
[t6, t5] and p1(t6) = p3(t6).

We separate the period (t5, t4), which we call period S.1
(when the climate conditions are disadvantageous and all
the allocated material is stored), and time-span (t6, t5) called
period S.2 (when the climate conditions are kindly, but all
the allocated material is anyway stored for a preparation to
the unfavorable climate conditions).

Both reproductive and vegetative periods can precede to
the storage period. It depends on the climate conditions and
values of x0.

We consider in the next subsection the case, when the first
period after germination is a vegetative.

C. Predictions of the model

In this section we conclude our investigations. The devel-
opment of the plant according to the model (1) consists of 3
main periods that can be further subdivided into subperiods
and that can follow each other as depicted in the Figure 1.

These periods are:

• D - Dormancy.
• V - Vegetative period.
• S.2 - Preparing for the unfavorable climate conditions.
• S.1 - Life in unfavorable climate conditions.
• V.2 - Vegetative period, which starts after storage period.

In the beginning of this period, a plant starts the
allocation to vegetative tissues as a preparation for the
climate conditions favorable for the photosynthesis.

• V.1 Allocation to vegetative tissues before reproduction.
• R - Reproduction.

Important special cases of this scheme are:

1) Annual plant with multiple reproduction periods: see
Figure 2 (period V we identify with V.1 for simplicity).
Multiple reproduction periods appear because of losses
of vegetative mass due to external factors that are
modeled by the function µ . This particular case has
been analyzed in the early work [18]. If µ ≡ 0, then
the multiple reproductive periods for annual plants are
not possible.

2) Monocarpic plants. Sufficient (but not necessary) con-
dition for a plant to be monocarpic (in case where there
is no mortality) is negligibility of ω (in particular, if
ω ≡ 0), in other words, the mass of storage cannot
decrease due to the external factors. In this case
transitions R → S.2 and V.1 → V.2 are not possible,
see Figure 3.
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D V S.2 S.1 V.2 V.1 R

Fig. 1. Stages of perennial plant development

D V R

Fig. 2. Life-stages of annual plants

III. OPTIMIZATION OF THE SEED MASS

In the previous sections we have defined fitness of a
plant as an expectation of the mass of reproductive tissues
produced by the plant during its life. To maximize the fitness,
a plant controls the allocation of photosynthate.

However, it is well-known, that the fitness depends (for
plants that propagate exclusively through seeds) crucially
on the quantity (and size) of seeds, that a plant produces.
Current models of optimal allocation do not provide this
information, and a mass of a seed is treated as an external
parameter. But essentially a choice of a mass of the seed is an
additional control, which a plant can use in order to allocate
the photosynthate efficiently. Therefore in the next section
we extend the model from the previous section, giving to a
plant an additional control over the mass of a seed.

A. Modeling and Analysis

Let y0 = (y0
1,y

0
2,y

0
3) be the total mass of the seeds (the

vector consisting of the masses of three components of a
plant within seeds) that has to be divided between a seeds,
a ∈ [1,∞) and a can be either natural or real number.

We assume that the mass of each seed is s = y0
a .

We model the dynamics of a plant as follows

ẋ1 = v1(t)g(x3)−µ(t)x1,
ẋ2 = (v(t)− v1(t))g(x3),
ẋ3 = ζ (t) f (x1)− v(t)g(x3)−ω(t)x3,
x(0) = 1

a y0.

(16)

Here x(0) = (x1(0),x2(0),x3(0)).
The aim of a plant we define as maximization of the

total mass of reproductive tissues produced by all direct
descendants:

max
0≤v(t)≤1, 0≤v1(t)≤v(t), a∈[1,∞)

Qa = aξ

∫ T

t0
L(s)ẋ2(s)ds, (17)

where a constant ξ shows the percentage of the seeds,
which germinate to the total quantity of produced seeds. We
assume, that ξ doesn’t depend on the size of a seed.

Important special case is when f and g are concave
functions, i.e., the rate of photosynthesis and maximal speed
of chemical reactions in a plant are saturated with the growth

of the mass of a plant (due to self-shading of leaves, nutrient
depletion in the soil etc.). We have the following result:

Proposition 1: Consider an optimal control problem (16),
(17). Let f ,g : R+→ R+ be concave, f (0) = g(0) = 0, a ∈
[1,∞). Then Qa increases, when a increases.

Proof: The problem (16), (17) can be written in equiv-
alent form, using new variables yi(t) := axi(t), i = 1,2,3.
Then we have:

ẏ1 = v1(t)ag( y3
a )−µ(t)y1,

ẏ2 = (v(t)− v1(t))ag( y3
a ),

ẏ3 = ζ (t)a f ( y1
a )− v(t)ag( y3

a )−ω(t)y3,
y(0) = y0.

(18)

The corresponding maximum problem is:

max
0≤v(t)≤1, 0≤v1(t)≤v(t), a∈[1,∞)

Qa = ξ

∫ T

t0
L(s)ẏ2(s)ds. (19)

Now the problem is similar to (1), (4), but with a f ( y1
a )

and ag( y3
a ) instead of f (x1) and g(x3).

Using concavity we have: f ( y1
a ) = f ( 1

a y1 +
a−1

a · 0) ≥
1
a f (y1)+

a−1
a f (0) = 1

a f (y1).
Thus, for every y1(t) ≥ 0, a ≥ 1 it holds a f ( y1(t)

a ) ≥
f (y1(t)) and therefore a f ( y1(t)

a ) and ag( y3(t)
a ) are nonde-

creasing in a and supa∈[1,∞) a f ( y1(t)
a ) and supa∈[1,∞) ag( y3(t)

a )
yields, when a→ ∞.

Define the optimal trajectories of the problem (16), (17)
for a fixed a as y(·). Now take arbitrary n > a and consider
a system

ẏ1 = v1(t)ag( y3
a )−µ(t)y1,

ẏ2 = (v(t)− v1(t))ag( y3
a ),

ẏ3 = ζ (t)n f ( y1
n )− v(t)ag( y3

a )−ω(t)y3,
y(0) = y0.

(20)

The solution of this system at time t subject to optimality
condition (18) we denote ŷ(t). If ζ (0) > 0, then from
n f ( y1(t)

n )> a f ( y1(t)
a ) we have that ˙̂y3(0)> ẏ3(0,a) and there-

fore there exists t∗ > 0 : ˙̂y3(t) > ẏ3(t,a) ∀t ∈ [0, t∗). Hence
ŷ3(t)> y3(t,a) and ag( ŷ3(t)

a )> ag( y3(t,a)
a ) for t ∈ (0, t∗).

Let v and v1 be the optimal controls for the system
(18). There exist controls 0 ≤ v̂ ≤ v, 0 ≤ v̂1 ≤ v1 for the
system (20), such that v̂(t)ag( ŷ3(t)

a ) = v(t)ag( y3(t,a)
a ) and

v̂1(t)ag( ŷ3(t)
a ) = v1(t)ag( y3(t,a)

a ).
Consequently, ŷi(t)= yi(t,a), t ∈ [0, t∗), i= 1,2. Construct-

ing v̂, v̂1 for all t ∈ [0,T ], we obtain that ŷ2(T ) = y2(t,a) and
thus for a given a and n> athe optimal trajectory of a system
(20) produces no less output than the best trajectory of (18).
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Fig. 3. Life-stages of monocaprics

Analogously, the output of the following system is not less
than that of the system (20):

ẏ1 = v1(t)ng( y3
n )−µ(t)y1,

ẏ2 = (v(t)− v1(t))ng( y3
n ),

ẏ3 = ζ (t)n f ( y1
n )− v(t)ng( y3

n )−ω(t)y3,
y(0) = y0.

(21)

Hence Qa is nondecreasing in a.
It follows from the previous proposition that in the case,

when f and g are concave the best strategy for a plant is to
produce as much seeds as possible.

Remark 2: Similar argument shows that for convex func-
tions f , g the optimal mass of the seed has to be as large as
possible (without additional restrictions on quantity of seeds
a = 1).

Remark 3: Note that if both f and g are linear, then from
(18) it follows that the yield of a plant does not depend on
the mass of the seeds.

B. Discussion of results

We see that the optimal size of a seed depends crucially
on the form of the functions f and g. For concave functions
that are often used to take into account self-shading, bound-
edness of resources etc. (see e.g. [13]) we have proved that
according to our model seeds have to be as small as possible.

For plants living in open environments and for species
occupying early phases in succession (colonizing species)
the assumption of concavity is not an oversimplification. The
behavior that our model predicts, namely that the optimal
strategy is to produce a vast amount of small seeds is
common for these species [19].

However, in closed and shady environments, under min-
eral shortage, or if there is a strong competition with the
established vegetation, the rate of photosynthesis per unit
mass can increase with increasing of a mass of a plant, that
is, the function f is convex on some [0, p], p > 0 and the
seeds cannot be too small. These predictions are, in general,
in accordance with field data [20], [21], but see [22].
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[4] M. Ziółko, J. Kozłowski, Some optimization models of growth in
biology, IEEE Trans. Automat. Control 40 (10) (1995) 1779–1783.

[5] I. Ioslovich, P.-O. Gutman, On the botanic model of plant growth with
intermediate vegetative-reproductive stage, Theoretical Population Bi-
ology 68 (3) (2005) 147 – 156.

[6] M. De Lara, Mum, why do you keep on growing? Impacts of envi-
ronmental variability on optimal growth and reproduction allocation
strategies of annual plants, J. Math. Biol. 52 (5) (2006) 633–666.

[7] N. Yamamura, N. Fujita, M. Hayashi, Y. Nakamura, A. Yamauchi,
Optimal phenology of annual plants under grazing pressure, Journal
of Theoretical Biology 246 (3) (2007) 530–537.

[8] D. Takahashi, A. Yamauchi, Optimal Defense Schedule of Annual
Plants against Seasonal Herbivores., The American Naturalist 175 (5)
(2010) 538–550.

[9] G. Fox, Annual plant life histories and the paradigm of resource
allocation, Evolutionary Ecology 6 (6) (1992) 482–499.

[10] F. Bazzaz, J. E. Grace, Plant Resource Allocation, edited volume,
Academic Press, 1997.

[11] E. G. Reekie, F. E. Bazzaz, Reproductive Allocation in Plants, edited
volume, Academic Press, 2005.

[12] W. M. Schaffer, The application of optimal control theory to the
general life history problem., The American Naturalist 121 (3) (1983)
418–431.

[13] Y. Iwasa, D. Cohen, Optimal growth schedule of a perennial plant,
The American Naturalist 133 (4) (1989) 480–505.

[14] J. Kozłowski, A. Pugliese, Optimal patterns of growth and reproduc-
tion for perennial plants with persisting or not persisting vegetative
parts., Evolutionary Ecology 4 (1990) 75–89.

[15] A. Alekseev, V. Tikhomirov, S. Fomin, Optimal control (transl. from
Russian), Consultants Bureau, New York, 1987.

[16] C. C. Smith, S. D. Fretwell, The Optimal Balance between Size and
Number of Offspring, The American Naturalist 108 (962) (1974) 499–
506.

[17] M. Fenner (Ed.), Seeds: the ecology of regeneration in plant commu-
nities., 2nd Edition, CABI Publishing, 2000.

[18] D. King, J. Roughgarden, Multiple switches between vegetative and
reproductive growth in annual plants, Theoretical Population Biology
21 (2) (1982) 194 – 204.

[19] J. L. Harper, P. H. Lovell, K. G. Moore, The shapes and sizes of seeds,
Annual Review of Ecology and Systematics 1 (1970) 327–356.

[20] A. Jakobsson, O. Eriksson, A comparative study of seed number, seed
size, seedling size and recruitment in grassland plants, Oikos 88 (3)
(2000) 494–502.

[21] M. Westoby, M. Leishman, J. Lord, H. Poorter, D. J. Schoen,
Comparative Ecology of Seed Size and Dispersal [and Discussion],
Philosophical Transactions: Biological Sciences 351 (1345) (1996)
1309–1318.

[22] D. J. Metcalfe, P. J. Grubb, I. M. Turner, The ecology of very
small-seeded shade-tolerant trees and shrubs in lowland rain forest
in Singapore, Plant Ecology 134 (2) (1998) 131–149.

[23] V. F. Borisov, Fuller’s phenomenon: Review, Journal of Mathematical
Sciences 100 (4) (2000) 2311–2354.

3366


