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Abstract— We investigate the relationship between input-
to-state stability (ISS) of linear infinite-dimensional systems
and existence of coercive ISS Lyapunov functions. We show
that input-to-state stability of a linear system does not imply
existence of a coercive quadratic ISS Lyapunov function, even
if the underlying semigroup is analytic, and the input operator
is bounded. However, if in addition the semigroup is similar to
a contraction semigroup on a Hilbert space, then a quadratic
ISS Lyapunov function always exists.

Next we consider analytic and similar to contraction semi-
groups in Hilbert spaces with unbounded input operator B. If
B is slightly stronger than 2-admissible, we construct explicitly
a coercive L2-ISS Lyapunov function. If the generator of a
semigroup is additionally self-adjoint, this Lyapunov function
is precisely a square norm in the state space.

Keywords: infinite-dimensional systems, linear systems, input-
to-state stability, Lyapunov methods, semigroup theory.

I. INTRODUCTION

Input-to-state stability (ISS) was introduced by E. Sontag
in [2] and has rapidly become a foundational concept in
robust nonlinear control with diverse applications to robust
stabilization [3], nonlinear observer design [4], analysis
of large-scale networks [5], [6], event-based control [7],
networked control systems [8], ISS feedback redesign [2],
quantized control [9], nonlinear detectability [10], etc. Re-
cently, the ISS notion has been extended to wide classes of
distributed parameter systems, including partial differential
equations (PDEs) with distributed and boundary inputs, semi-
linear evolution equations in Banach spaces, delay systems,
etc. [11], [12], [13], [14], [15], [16], [17], [18], [19]. We
refer to [20] for a survey of the state of the art of infinite-
dimensional ISS theory and its applications to robust control
and observation of distributed parameter systems, as well as
[21] for an overview of available results on ISS of linear
boundary control systems and some semilinear extensions.

One of the cornerstone concepts within the ISS theory is a
notion of ISS Lyapunov function. For ODEs with Lipschitz
continuous right hand side, it is known that existence of
a coercive ISS Lyapunov function is equivalent to ISS of
a system [22], which was extended to a wide class of
semilinear evolution equations with Lipschitz nonlinearities
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and distributed inputs in [23]. For PDEs with boundary
inputs the situation is much more complex. For instance,
the classic linear heat equation with Dirichlet boundary
inputs is ISS, which has been verified by means of the
notion of admissible operators [15], monotonicity approach
[24], as well as using spectral analysis [14]. However, no
coercive ISS Lyapunov function is known for this system,
and an existence of such a function is neither proved nor
disproved. To address this problem, in [11], [25] the concept
of a non-coercive Lyapunov function has been proposed,
and in [26] it was shown that existence of a non-coercive
ISS Lyapunov function implies ISS, provided some further
properties hold. In particular, a quadratic non-coercive ISS
Lyapunov function has been constructed for the 1-D heat
equation with a Dirichlet boundary input, see [26]. Yet, it
remains an open problem, whether a coercive ISS Lyapunov
function for such a simple boundary control system exists.
The problem becomes even more intriguing as for linear
parabolic systems with Neumann and Robin boundary inputs
and for linear first order hyperbolic systems (systems of
conservation laws) rather simple coercive quadratic ISS Lya-
punov functions exist [17], [12]. All this makes developing
systematic Lyapunov methods for analysis of linear and
nonlinear boundary control systems a central problem in the
infinite-dimensional ISS theory.

In this paper, we investigate the relationship between ex-
istence of coercive Lyapunov functions and the ISS property.
In [23], it was shown that a linear system on a general
Banach space with distributed control is ISS if and only
if there exists a coercive ISS Lyapunov function. This
Lyapunov function however is not necessarily quadratic, even
if X is a Hilbert space. Moreover, on Hilbert spaces such
a system is ISS if and only if there exists a non-coercive,
quadratic ISS Lyapunov function. In this note, we show that
one cannot expect to have a coercive quadratic Lyapunov
function even if additionally the system is supposed to be
analytic. However, we also show that a coercive, quadratic
Lyapunov function exists if the underlying semigroup is
similar to a Hilbert space contraction semigroup, which is
not a strong limitation in practice.

If B is unbounded operator, it is well-known, that L2-
ISS of ẋ = Ax + Bu is equivalent to 2-admissibility of
B and exponential stability of the underlying semigroup.
Next we argue that for analytic and similar to contraction
semigroups the condition B ∈ L(U,X−p), p ∈ (0, 12 ) (which
is somewhat stronger condition than 2-admissibility) implies
the existence of a coercive L2-ISS Lyapunov function.
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If A is additionally self-adjoint, then a weaker condition
B ∈ L(U,X− 1

2
) (still slightly stronger than 2-admissibility)

already suffices for the same claim.
As a rule, Lyapunov methods are the most realistic way

to study stability and ISS of nonlinear systems. The results
that we obtain here are a part of our long-term aim to
rigorously settle the applicability of Lyapunov methods to
linear systems with unbounded input operators and then
to extend the methods to treat the nonlinear PDEs with
boundary controls and more generally nonlinear boundary
control systems.

Notation. Throughout this note X and Y will refer to
Banach spaces which may, at instances, be specified to be a
Hilbert space with an inner product 〈·, ·〉.

For a Banach space (U, ‖ · ‖U ), we denote by L∞(0, t;U)
the space of Bochner measurable functions u : (0, t) →
U with finite essential supremum norm ‖u‖L∞(0,t) :=
ess sups∈(0,t) ‖u(s)‖U and similarly we define the common
Lebesgue Bochner spaces Lp(R+

0 , U), p ∈ [1,∞]. We denote
the space of bounded operators acting from X to a Banach
space Y by L(X,Y ). For short, L(X) := L(X,X).

Denote R+
0 := [0,+∞), (R+

0 )2 := R+
0 × R+

0 and recall
the following well-known classes of comparison functions.

K = {µ ∈ C(R+
0 ,R

+
0 ) | µ(0) = 0, µ strictly increasing},

K∞ = {θ ∈ K | lim
x→∞

θ(x) =∞},

L = {γ ∈ C(R+
0 ,R

+
0 ) | γ str. decreas., lim

t→∞
γ(t) = 0},

KL = {β : (R+
0 )2 → R+

0 | β(·, t) ∈ K ∀t, β(s, ·) ∈ L ∀s 6= 0}.

II. LINEAR SYSTEMS AND THEIR STABILITY

In the following, let A : D(A) ⊂ X → X always be an
infinitesimal generator of a strongly continuous semigroup
T := (T (t))t≥0 on X with a nonempty resolvent set ρ(A).
Recall that a semigroup T is called analytic if T extends to
an analytic mapping z 7→ T (z) on a sector

Sζ = {z ∈ C \ {0} : arg(z) < ζ}

for some ζ ∈ (0, π/2] and limz→0,z∈Sθ T (z)x = x for all
x ∈ X and some θ ∈ (0, ζ).

For the rest of the paper, we will be interested in systems
Σ(A,B) given by abstract Cauchy problems of the form

ẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0, (1)

where A : D(A)→ X generates a C0-semigroup (T (t))t≥0
and B is an operator, which is possibly unbounded, acting
on the input space U . The reason for allowing unbounded
operators B stems from the study of systems with boundary
or point controls; see, e.g., [27], [28]. Note that in contrast
to the (in general unbounded) operator A, B will always be
defined on the “full space” U , and the “unboundedness” is
only reflected in the norm on the image space. To clarify the
precise assumptions on B, let us recall a solution concept
for (1): Consider the function x (formally) given by

x(t) = T (t)x0 +

∫ t

0

T (t− s)Bu(s)ds, t ≥ 0, (2)

for any x0 ∈ X and u ∈ L1
loc(R≥0, U). If x, which we

denote also φ(·, x0, u), maps [0,∞) to X , then we call x
the mild solution of (1). If B is a bounded operator in the
sense that B ∈ L(U,X), then (2) indeed defines such mild
solution. For more general operators B, suitable properties
are required, in particular such that the integral in (2) is
well-defined in X for all t > 0 and inputs u from a
space of U -valued (equivalence classes of) functions such
as Lq(0,∞;U)

To introduce these properties, we will view the conver-
gence of the integral in a weaker norm on X as follows.
Define the extrapolation space X−1 as the completion of X
with respect to the norm ‖x‖X−1 := ‖(aI − A)−1x‖X for
some a ∈ ρ(A). X−1 is a Banach space (see [29, Theorem
5.5, p. 126]) and different choices of a ∈ ρ(A) generate
equivalent norms on X−1, see [29, p. 129]. As we know
from the representation theorem [30, Theorem 3.9], the input
operator B must satisfy the condition B ∈ L(U,X−1) in
order to give rise to a well-defined control system. Lifting
of the state space X to a larger space X−1 is natural
because the semigroup (T (t))t≥0 extends uniquely to a
strongly continuous semigroup (T−1(t))t≥0 on X−1 whose
generator A−1 : X−1 → X−1 is an extension of A with
D(A−1) = X , see, e.g., [29, Section II.5]. If clear from the
context, we may drop the subscript “−1” in our notation.
Thus we may consider Equation (1) on the Banach space
X−1 by replacing A by A−1 and henceforth interpret (2)
in X−1 as the integral exists in X−1 when the extension of
the semigroup is considered. The standing assumption for
systems Σ(A,B) is thus that B ∈ L(U,X−1) and where X
and U are general Banach spaces. The lifting comes however
at a price that x has values in X−1 in general. This motivates
the following definition:

Definition 1 The operator B ∈ L(U,X−1) is called a q-
admissible control operator for (T (t))t≥0, where 1 ≤ q ≤ ∞,
if for all t ≥ 0 and u ∈ Lq([0, t], U), it holds that∫ t

0

T−1(t− s)Bu(s)ds ∈ X. (3)

If the analogous property holds for continuous functions u ∈
C([0, t], U), we say that B is C-admissible.

If B is q-admissible, then x defined by (2) is indeed a mild
solution of (1). Note that q-admissibility means precisely the
forward-completeness of control systems for all inputs from
Lq . It is easy to see that any mild solution is continuous if B
is q-admissible for q <∞, see [30, Proposition 2.3]. In the
critical case q = ∞, this is also known in many practically
relevant situations, see e.g. [15], [16], but not entirely clear
in general.

For linear systems with admissible B, we study the
following stability notions.

Definition 2 System Σ(A,B) is called Lp-input-to-state sta-
ble (Lp-ISS), if there exist functions β ∈ KL and µ ∈ K∞
such that for every x0 ∈ X , every t ≥ 0 and every
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u ∈ Lp(0, t;U), the mild solution x of (1) satisfies x(t) ∈ X
and

‖x(t)‖ ≤ β(‖x0‖, t) + µ(‖u‖Lp(0,t)). (4)

ISS of (1) can be characterized as follows, see [15, Propo-
sition 2.10]:

Theorem 3 Let p ∈ [1,+∞]. The following properties are
equivalent for a system Σ(A,B)

(i) (1) is Lp-ISS
(ii) T is exponentially stable and B is p-admissible

Definition 4 (ISS Lyapunov function) Consider Σ(A,B)
and suppose that B is ∞-admissible. A continuous function
V : X → R+

0 is called a (non-coercive) ISS Lyapunov
function for Σ(A,B) if there exist α2 ∈ K and σ ∈ K∞
such that

0 < V (x) ≤ α2(‖x‖), x 6= 0,

and for all x ∈ X and all u ∈ L∞loc(0,∞;U),

V̇u(x) ≤ − α3(‖x‖) + σ(lim sup
t→0+

‖u‖L∞(0,t)), (5)

where V̇u(x) is the right-hand Dini derivative of V (x(·)) at
t = 0:

V̇u(x) := lim sup
h→0+

1

h

(
V (φ(t, x, u))− V (x)

)
and φ(·, x, u) is the mild solution (2) of (1) with initial
condition x and input u.

An ISS Lyapunov function is called coercive if there exists
another K∞-function α1 such that

α1(‖x‖) ≤ V (x), x ∈ X.

The map V is called Lyapunov function (for the uncontrolled
system (1)) if V is an ISS Lyapunov function for Σ(A, 0).

We emphasize that any ISS Lyapunov function is a Lyapunov
function for the uncontrolled system.

Definition 5 (Quadratic Lyapunov function) Let X be a
Hilbert space. An ISS Lyapunov function V : X → R+

0 is
called a quadratic ISS Lyapunov function if there exists a
self-adjoint operator P ∈ L(X) such that V (x) = 〈Px, x〉
for all x ∈ X . In this case, we also say that V is quadratic.

We call a bounded, self-adjoint operator P positive if
〈Px, x〉 > 0 for all x ∈ X \{0}. Clearly, if V is a quadratic
Lyapunov function, then the corresponding operator P such
that V (x) = 〈Px, x〉, x ∈ X , is positive in the sense that
〈Px, x〉 > 0 for all x ∈ X\{0}. Furthermore, P is invertible
(with a bounded inverse) if and only if V is coercive.

Classical constructions of Lyapunov functions via solution
of the Lyapunov operator equation, see [31, Theorem 4.1.3],
lead to quadratic Lyapunov functions. Furthermore, quadratic
Lyapunov functions can be easily differentiated, and there
are efficient numerical schemes for construction of quadratic
Lyapunov functions, such as sum of squares (SoS).

The following characterization is elementary, but moti-
vates how to define quadratic Lyapunov functions for general
Banach spaces.

Proposition 6 Let X be a Hilbert space. An ISS Lyapunov
function V : X → R+

0 is a quadratic ISS Lyapunov function
if and only if there exists F ∈ L(X) such that

V (x) = ‖Fx‖2, x ∈ X. (6)

In view of Proposition 6, in the Banach space setting,
we will call functions V as in (6) quadratic ISS Lyapunov
functions.

The use of K-functions in the definition of ISS Lyapunov
functions is natural as one is interested in general nonlinear
Lyapunov functions. It is not surprising that for quadratic
Lyapunov functions there is no need to consider general
comparison functions.

Lemma 7 Let X be a Hilbert space. Let V : X → R+
0 be a

coercive, quadratic ISS Lyapunov function for Σ(A,B) with
∞-admissible B and with σ(r) = a4r

2 in (5). Then there
exist constants a1, a2, a3 > 0 such that

a1‖x‖2 ≤ V (x) ≤ a2‖x‖2, x ∈ X, (7)

and for all u ∈ L∞(R+
0 , U) we have

V̇u(x) ≤ −a3‖x‖2 + a4(lim sup
t→0+

‖u‖L∞(0,t))
2, x ∈ X.

(8)

ISS Lyapunov functions as defined above, are of virtue to
study L∞-ISS. For the analysis of Lp-ISS, another type of
ISS Lyapunov functions is needed.

Definition 8 (Quadratic Lp-ISS Lyapunov function)
Consider a system Σ(A,B) with C-admissible

B ∈ L(U,X−1). A continuous function V : X → R+
0 is

called a (non-coercive) quadratic Lp-ISS Lyapunov function
for Σ(A,B) if there is an invertible operator F ∈ L(X)
and constants a3, a4 > 0 such that (6) holds and

V̇u(x) ≤ −a3‖x‖2 + a4‖u(0)‖pU , (9)

for all x ∈ X and all u ∈ C(R+
0 , U). If in addition (7) holds

for some a1, a2 > 0, then V is a called coercive quadratic
L2-ISS Lyapunov function.

As shown in [32, Theorem 1], the following holds:

Proposition 9 If B is 2-admissible and there is a quadratic
coercive L2-ISS Lyapunov function for Σ(A,B), then
Σ(A,B) is Lp-ISS for all p ∈ [2,+∞).

Proof. As the flow φ of Σ(A,B) depends continuously on
inputs, the claim follows from [32, Theorem 1], where using
nonlinear rescaling of V , an explicit construction of the (non-
quadratic) Lq-ISS Lyapunov functions was provided, for all
q ∈ (2,+∞). �

Next we show that Lp-ISS Lyapunov functions for linear
systems cannot be quadratic unless p = 2.

4701



Proposition 10 Let V be a (coercive or non-coercive)
quadratic Lp-ISS Lyapunov function for Σ(A,B) with B 6= 0
and p ∈ [1,+∞). Then p = 2.

Proof. By definition, there is a ≥ 0 such that

V̇u(0) ≤ a‖u(0)‖pU , u ∈ C(R+
0 , U).

Take am as the infimum of a > 0 satisfying the previous
property. As B 6= 0, am > 0.

By the linearity of φ in u, and as V is quadratic, we see
that for any u ∈ C(R+

0 , U), and any c > 0

V̇cu(0) = lim sup
h→+0

V (φ(h, 0, cu))

h
= c2 lim sup

h→+0

V (φ(h, 0, u))

h

≤ c2am‖u(0)‖pU = c2−pam‖cu(0)‖pU ,

and taking c > 1 for p > 2 and c < 1 for p < 2, we come
to a contradiction to the choice of am. �

III. COERCIVE QUADRATIC LYAPUNOV FUNCTIONS FOR
LINEAR SYSTEMS WITH BOUNDED INPUT OPERATORS

Importance of Lyapunov functions is due to the fact, that
they are certificates for important stability properties. As we
are interested in this note in ISS, we recall the following
result from [23, Theorem 8]:

Proposition 11 Let X be a Hilbert space, A be a generator
of a strongly continuous semigroup and B ∈ L(U,X). The
following statements are equivalent:

(i) (1) is Lp-ISS for some p ∈ [1,+∞].
(ii) (1) is Lp-ISS for all p ∈ [1,+∞].

(iii) There is a coercive L1-ISS Lyapunov function for (1),
which is an equivalent norm on X .

(iv) There is a non-coercive quadratic L2-ISS Lyapunov for
(1).

Coercive L1-ISS Lyapunov functions constructed in the proof
of Proposition 11 in [23] to show the equivalence between
(i) and (iii) are never quadratic. In fact, they are norms on
X , equivalent to ‖ · ‖, and thus they are homogeneous of
degree one. In this section, we show a criterion for existence
of a quadratic coercive L2-ISS Lyapunov function for linear
systems with bounded input operators.

We say that a semigroup T is similar to a contraction
semigroup, if there is a boundedly invertible operator S :
X → X so that (ST (t)S−1)t≥0 is a contraction semigroup1.

We call 〈·, ·〉new an equivalent scalar product in X , if
〈·, ·〉new is a scalar product in X that induces a norm
‖ · ‖new =

√
〈·, ·〉new that is equivalent to the norm ‖ · ‖

in X .
The following result settles existence of coercive,

quadratic Lyapunov functions for systems with bounded B.

Theorem 12 Let X be a Hilbert space, B ∈ L(U,X) and
let A generate an exponentially stable semigroup T on X .
The following statements are equivalent:

1Following standard conventions, we tacitly assume here that S−1 is
defined on the whole space X .

(i) There is a coercive, quadratic L2-ISS Lyapunov function
for (1);

(ii) There is a coercive, quadratic Lyapunov function for (1)
with B = 0;

(iii) There exists an equivalent scalar product 〈·, ·〉new such
that A is dissipative, i.e.

<〈Ax, x〉new ≤ 0, x ∈ D(A) (10)

and x 7→ 〈x, x〉new = ‖x‖2new is a quadratic ISS
Lyapunov function for (1).

(iv) There exists an equivalent scalar product 〈·, ·〉new such
that A is dissipative.

(v) T is similar to a contraction semigroup;
(vi) There is an equivalent norm in X of the form

W (x) = ‖Fx‖, for F ∈ L(X), such that
Ẇ (x) ≤ −W (x) for B = 0.

Supported by Theorem 12, we have the following negative
result on existence of coercive quadratic Lyapunov functions
for exponentially stable systems.

Proposition 13 For any infinite-dimensional Hilbert space
X there exists a generator A of an exponentially stable,
analytic semigroup T on X such that the system Σ(A, 0)
has no coercive, quadratic Lyapunov function.

Proof. Assume that there exists a coercive, quadratic
Lyapunov function V : X → R+

0 . By Theorem 12, it
follows that A generates a semigroup, similar to a contraction
semigroup. However, for any infinite-dimensional Hilbert
space, it is possible to construct analytic, exponentially
stable semigroups, which are not similar to a contraction
semigroup, see [33] and also [34, Chapter 9]. �

Remark 14 Let B ∈ L(U,X). Combining Theorem 12 with
Proposition 11, we obtain another negative result: Existence
of a coercive ISS Lyapunov function for Σ(A,B) does
not imply existence of a coercive quadratic ISS Lyapunov
function for Σ(A,B) (in contrast to finite-dimensional linear
case).

Recall that for generator A of an exponentially stable
analytic semigroup, the operator −A is sectorial (of angle
less than π/2), see [34]. Thus the fractional power (−A)−α,
α ∈ (0, 1) can be defined as bounded operator via a
contour integral of an operator-valued analytic function; this
is an instance of the Riesz–Dunford functional calculus for
sectorial operators. It can be shown that this operator is
injective since A is injective and hence (−A)α can be defined
as the inverse. The operator (−A)α is closed and densely
defined. For more information on this construction see the
books [34] and [35, Section 1.4]. For a very brief description
of the essentials required here, [21].

The following result provides an alternative construction
of a coercive quadratic Lyapunov function for exponentially
stable analytic systems with bounded B.
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Theorem 15 Let X be a Hilbert space, B ∈ L(U,X), and
let A generate an exponentially stable analytic semigroup T
on X . The conditions (i)–(vi) in Theorem 12 are equivalent
to
(vii) The function

V : D(A)→ R+
0 , x 7→

∫ ∞
0

‖(−A)
1
2T (t)x‖2 dt (11)

extends to a coercive, quadratic ISS Lyapunov function
from X to R+

0 for the system Σ(A,B). We denote this
extension again by V .

Remark 16 Lyapunov function in (11) takes a particularly
simple form in case if A is a self-adjoint operator.

Let P be a solution of the Lyapunov equation

〈Px,Ax〉+ 〈Ax, Px〉 = −‖x‖2, x ∈ D(A). (12)

Pick any x ∈ D(A1/2) ⊃ D(A). It holds that

V (x) =

∫ +∞

0

〈
(−A)

1
2T (t)x, (−A)

1
2T (t)x

〉
dt

=

∫ +∞

0

〈
T (t)(−A)

1
2x, T (t)(−A)

1
2x
〉
dt

=
〈
P (−A)

1
2x, (−A)

1
2x
〉

=
〈(

(−A)
1
2

)∗
P (−A)

1
2x, x

〉
.

If A is self-adjoint, then (−A)
1
2 is again self-adjoint.

Furthermore, P := − 1
2A
−1 solves the equation (12) and

V takes the form

V (x) =
1

2

〈(
(−A)

1
2

)
A−1(−A)

1
2x, x

〉
=

1

2
〈x, x〉 .(13)

As D(A1/2) is dense in X , V clearly extends by formula
(13) to the whole X .

IV. COERCIVE L2-ISS LYAPUNOV FUNCTIONS FOR
LINEAR L2-ISS SYSTEMS

In view of Proposition 9 and Theorem 3, the existence of
a coercive L2-ISS Lyapunov function implies 2-admissibility
of B, for any well-posed linear system Σ(A,B).

In this section, we establish the converse results for
analytic semigroups that are similar to contraction semi-
groups. The following lemma on sufficient conditions for
admissibility of B will be helpful on this way:

Lemma 17 Let A be an analytic semigroup over a Hilbert
space X . Then

(i) If B ∈ L(U,X− 1
2+p

) for some p ≥ 0, then B is q-
admissible for all q ∈ ( 2

1+2p ,+∞]. In particular, if p >
0, then B is 2-admissible.

(ii) If A is self-adjoint, and B ∈ L(U,X− 1
2
), then B is

2-admissible.
(iii) If A is self-adjoint, and B is 2-admissible, then B does

not necessarily satisfy the condition B ∈ L(U,X− 1
2
).

Proof. (i) follows from [21, Proposition 2.13].

(ii) follows directly from [28, Proposition 5.1.3] by duality
of admissible control and observation operators.

(iii) The claim follows from the following counterexample,
which is an adaptation of [28, Example 5.3.11] by duality.

Consider the state space X = `2, a diagonal operator A =
(−2n)n∈Z+

, and an input operator B : C → X , given by
Bc = (2n/2)n∈Z+c. Then

(−A)−
1
2B = (1, 1, 1, . . .),

which is not a well-defined operator from C to X .
At the same time, A is 2-admissible by Carleson criterion

[28, Theorem 5.3.2].
However, (−A)−pB = (2(

1
2−p)n)n∈Z+

is a bounded
operator from C to X for p > 1

2 . �
We start with a converse coercive Lyapunov result for

systems with self-adjoint A:

Proposition 18 Let A = A∗ be a self-adjoint operator,
generating an exponentially stable semigroup T . Let further
B ∈ L(U,X− 1

2
). Then

V : x 7→ 1

2
‖x‖2, x ∈ X (14)

is a (coercive) L2-ISS Lyapunov function for Σ(A,B).

Proof. By Lemma 17(ii), B is 2-admissible, and thus
in particular C-admissible. In view of Theorem 15 and
Remark 16, V is a coercive quadratic Lyapunov function
for the system Σ(A, 0).

Now take any x0 ∈ D(A) and any u ∈ C1
loc(R

+
0 , U)

with u(0) = 0. Then the corresponding mild solution x is
even classical and we can differentiate the Lyapunov function
along trajectories, to obtain for all t > 0

d

dt
V (x(t)) = 〈ẋ(t), x(t)〉 = 〈Ax(t), x(t)〉+ 〈Bu(t), x(t)〉,

where the last term has to be understood as duality bracket
between X− 1

2
and X 1

2
⊂ X1. Hence, the modules of that

term can be bound from above by
1

ε
‖B‖2L(U,X−1/2)

‖u(t)‖2 + ε2‖(−A)
1
2x(t)‖2, ε > 0.

By assumption A is strictly dissipative in the sense that there
exists a constant a > 0 such that

−‖(−A)
1
2x(t)‖2 = 〈Ax(t), x(t)〉 ≤ −a‖x(t)‖2.

Thus, choosing ε sufficiently small yields

d

dt
V (x(t)) ≤ −κV (x(t)) + c‖u(t)‖2, t > 0,

for constants κ, c > 0. Integrating the equation gives

‖x(t)‖2 − ‖x0‖2 ≤ −κ
∫ t

0

‖x(s)‖2 ds+ c

∫ t

0

‖u(s)‖2 ds.

By the continuous dependence of x on x0 and u in X and
Cloc, respectively, the last inequality extends to all x0 ∈ X
and u ∈ C(R+

0 , U). By [31, Cor. A.5.45], we conclude that
the Dini derivative satisfies

V̇u(x) ≤ −κ‖x‖2 + c‖u(0)‖2, x ∈ X,u ∈ C(R+
0 , U).
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Next we formulate the converse L2-ISS Lyapunov theorem

for linear systems governed by general analytic semigroups
under a slightly stronger assumption on B.

Theorem 19 Let X be a Hilbert space and let A generate
an exponentially stable analytic semigroup T on X , which
is similar to a contraction semigroup. Furthermore, let B ∈
L(U,X−p) for some p < 1

2 . Then

V : D(A)→ R+
0 , x 7→

∫ ∞
0

‖(−A)
1
2T (t)x‖2 dt (15)

(extended to X) is a coercive quadratic L2-ISS Lyapunov
function for (1).

V. DISCUSSION

In this work, we have shown that quadratic Lyapunov
functions are a natural Lyapunov function concept to study
the L2-ISS of linear analytic systems in Hilbert spaces.
Under assumption that A generates an analytic semigroup
that is similar to a contraction, and if B ∈ L(U,X− 1

2+p
) for

p > 0, we give an explicit construction of a coercive L2-ISS
Lyapunov function for such a system. If A is self-adjoint,
then this function is just V (x) = ‖x‖2, and is a coercive
L2-ISS Lyapunov function under a milder assumption that
B ∈ L(U,X− 1

2
). Note that if B is not 2-admissible,

then no coercive quadratic Lp-ISS Lyapunov function can
be constructed for this system, and non-quadratic coercive
Lyapunov functions should be considered.
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