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Abstract— We propose a construction of Lyapunov functions
for linear and bilinear infinite-dimensional integral input-to-
state stable systems. In contrast to other constructions available
in the literature, we do not impose strong restrictions on the
type of the bilinear systems. The coercivity of such Lyapunov
functions as well as a possible extension to systems with
unbounded input operators are discussed.
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I. INTRODUCTION

Input-to-state stability (ISS) is widely recognized as a
central framework for study of robust stability. It unifies the
notions of internal and external stability [20], forms a basis
for the robust stability and stabilizability theory of nonlinear
systems [18], [7] and, by means of ISS small-gain theorems
[12], [6], [5], provides a firm basis for the stability analysis
of interconnected nonlinear control systems. However, in
spite of all the advantages of ISS theory, input-to-state stable
systems do not encompass all interesting systems with a
certain kind of robustness. In particular, systems appearing
in biochemical processes, population dynamics, traffic flows
etc. often do not enjoy the ISS property due to saturation and
limitations in actuators and processing rates. The states of
such systems may grow to infinity, provided the magnitude of
the applied input is large enough (but finite). Such a behavior
is impossible for ISS systems, which have trajectories that
stay bounded for inputs of a finite magnitude. To treat such
systems a weaker robustness property called integral input-
to-state stability (iISS) has been proposed [19]. Subsequently,
the theory of iISS systems has been developed in the finite-
dimensional setting, see [1], [9], [20] and references therein.

Success of ISS theory for ODE systems fostered devel-
opment of infinite-dimensional ISS theory [4], [13], [11].
Recently, the first attempts to study infinite-dimensional iISS
systems have been made [14], [15]. In particular, construc-
tions of Lyapunov functions for nonlinear parabolic systems
have been proposed in [4], [13] and interconnection of ISS
and iISS systems have been studied in [15], [4].

In this paper we develop a Lyapunov theory for ISS of
linear systems

ẋ(t) = Ax(t)+Bu(t) (1)
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and for iISS of bilinear systems of the form

ẋ(t) = Ax(t)+Bu(t)+C(x(t),u(t)), (2)

where A generates a strongly continuous semigroup T on a
Banach space X , B ∈ L(U,X) is a bounded linear operator,
and C : X×U → X is a nonlinear continuous operator, such
that there exist K > 0 and ξ ∈K :

‖C(x,u)‖X ≤ K‖x‖X ξ (‖u‖U ). (3)

for all x ∈ X and all u ∈U .
This class of systems is important due to several reasons.

On the one hand, it includes bilinear systems with bounded
operator C which arise in a number of applications such
as biochemical reactions or quantum-mechanical processes
[16]. On the other hand, bilinear systems is a basic class
of systems which are iISS but which are not ISS (for linear
systems with bounded input operators the notions of ISS and
iISS coincide). Last but not least the Lyapunov functions for
systems (2) play crucial role in the study of interconnections
of systems (2) with nonlinear ISS systems by means of small-
gain theorems, see [15].

The Lyapunov characterization of iISS for bilinear ODE
systems (that is for systems (2) with X = Rn) has been
derived by Sontag in [19]. It states that a bilinear system
is iISS iff it is 0-GAS and iff it possesses an iISS Lyapunov
function of a certain form.

In the infinite-dimensional context, ISS and iISS of (1) and
(2) have been studied in [14] for B ∈ L(U,X) and C, satisfy-
ing (3). It has been shown that under these conditions (2) is
iISS if and only if (2) is uniformly globally asymptotically
stable for u ≡ 0. For the special case when A generates an
analytic semigroup and X is a Hilbert space, iISS Lyapunov
functions for the system (2) have been constructed. The
restrictiveness of these requirements motivated us to seek
for new constructions, which are valid for any Banach space
X and for any strongly continuous semigroup T .

In this note we propose two constructions of ISS Lyapunov
functions for linear ISS systems (1). The first of them results
in a not necessarily coercive ISS Lyapunov function and
another one provides a coercive ISS Lyapunov function. Next
in Section IV we give a Lyapunov characterization of iISS for
bilinear systems with bounded B and C. These constructions
together with the results from [14] help to establish Lyapunov
characterizations of ISS and iISS for systems (1) and (2) with
bounded B and C.

Finally, in Sections V, VI we briefly describe difficulties,
arising in ISS theory for linear systems (1) with unbounded
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admissible input operators. We show by means of examples
that at least in some cases it is possible to construct ISS
Lyapunov functions for such systems. At the same time, if
V is an ISS Lyapunov function for (1) with a certain A and
all bounded B, this does not mean that V will be an ISS-
Lyapunov function for the system with the same A and any
unbounded admissible input operator.

II. PRELIMINARIES

Consider the system (2) and assume throughout the paper
that X and U are Banach spaces and that input functions be-
long to the space U := PC(R+,U) of piecewise continuous
functions from R+ to U , which are right-continuous. Also,
let A be the infinitesimal generator of a strongly continuous
semigroup T . Under (weak) solutions of (2) we understand
solutions of the integral equation

x(t) = T (t)x(0)+
∫ t

0
T (t− s)(Bu(s)+C(x(s),u(s)))ds, (4)

belonging to C([0,τ],X) for some τ > 0. We assume that for
each x(0)∈X such a solution exists and is unique and refer to
[2, Proposition 4.3.3] for details on conditions guaranteeing
existence and uniqueness.

Let φ(t,φ0,u) denote the state of the system (2), i.e. the
solution to (2), at time t ∈ R+ associated with an initial
condition φ0 ∈ X at t = 0, and an input u ∈U .

We define the following classes of comparison functions:

P := {γ ∈C(R+,R+) | γ(0) = 0, γ(r)> 0 for r > 0}
K := {γ ∈P | γ is strictly increasing}
K∞ := {γ ∈K | γ is unbounded}
L := {γ : R+→ R+ | γ is continuous and strictly

decreasing with lim
t→∞

γ(t) = 0}
K L := {β : R+×R+→ R+ | β is continuous,

β (·, t) ∈K , ∀t ≥ 0, β (r, ·) ∈L , ∀r > 0}

Next we introduce stability properties for the system (2).
Definition 1: System (2) is globally asymptotically stable

at zero uniformly with respect to the state (0-UGASs), if
there exists a β ∈K L , such that for all φ0 ∈ X , and all
t ≥ 0 it holds that

‖φ(t,φ0,0)‖X ≤ β (‖φ0‖X , t). (5)
To characterize stability properties of (2) with respect to

external inputs, the notion of input-to-state stability [4] is of
importance:

Definition 2: System (2) is called input-to-state stable
(ISS), if there exist β ∈K L and γ ∈K such that for all
φ0 ∈ X , all u ∈U and all t ≥ 0 it holds that

‖φ(t,φ0,u)‖X ≤ β (‖φ0‖X , t)+ γ( sup
s∈[0,t]

‖u(s)‖U ). (6)
Next we define another notion, which is strictly weaker than
ISS in the finite-dimensional case:

Definition 3: System (2) is called integral input-to-state
stable (iISS) if there exist α ∈K∞, µ ∈K and β ∈K L
such that the inequality

α(‖φ(t,φ0,u)‖X )≤ β (‖φ0‖X , t)+
∫ t

0
µ(‖u(s)‖U )ds (7)

holds for all φ0 ∈ X , u ∈U and t ≥ 0.
A crucial tool in study of ISS and iISS of control systems

is that of a Lyapunov function.
Definition 4: A continuous function V : X→R+ is called

a non-coercive iISS Lyapunov function, if there exist ψ2 ∈
K∞, α ∈P , σ ∈K such that

0 <V (x)≤ ψ2(‖x‖X ), ∀x 6= 0 (8)

and system (2) satisfies

V̇u(x)≤−α(‖x‖X )+σ(‖u(0)‖U ) (9)

for all x ∈ X and u ∈U , where

V̇u(x) = lim
t→+0

1
t
(V (φ(t,x,u))−V (x)). (10)

Furthermore:
• if lim

τ→∞
α(τ) = ∞ or liminfτ→∞ α(τ) ≥ limτ→∞ σ(τ)

holds, V is called an ISS Lyapunov function.
• if in addition there exists ψ1 ∈K∞ so that

ψ1(‖x‖X )≤V (x)≤ ψ2(‖x‖X ), ∀x ∈ X (11)

holds, then V is called a coercive iISS/ISS Lyapunov
function for (2).

We write V̇ instead of V̇u(x) when it is clear along which
solution the derivative is taken. Lyapunov functions help to
prove iISS and ISS of control systems:

Proposition 1 (Prop. 2, [14]): If there exists a coercive
iISS (resp. ISS) Lyapunov function for (2), then (2) is iISS
(resp. ISS).

III. LINEAR SYSTEMS

The aim of this section is to derive a converse Lyapunov
theorem for linear systems with a bounded input operator B
of the form

ẋ = Ax+Bu,
x(0) = x0.

(12)

To this end we will need an auxiliary lemma.
Lemma 1: Let B ∈ L(U,X) and let T be a C0-semigroup.

Then for any u ∈U it holds that

lim
h→+0

1
h

∫ h

0
T (h− r)Bu(r)dr = Bu(0). (13)

Proof: The proof is straightforward and is omitted.
The main technical result of this section is as follows:
Proposition 2: If (12) is 0-UGASs, then V : X → R+,

defined as

V (x) =
∫

∞

0
‖T (t)x‖2

X dt (14)

is a non-coercive ISS Lyapunov function for (12). Moreover,
∀x ∈ X , ∀u ∈U and ∀ε > 0 it holds that

V̇u(x)≤−‖x‖2
X +

εM2

2λ
‖x‖2

X +
M2

2λε
‖B‖2‖u(0)‖2

U , (15)

where M,λ > 0 are so that

‖T (t)‖ ≤Me−λ t . (16)
Proof: Let (12) be 0-UGASs and pick u ≡ 0. Then

(5) implies ‖T (t)x‖X ≤ β (1, t) for all t ≥ 0 and for all x
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with ‖x‖X = 1. Since β ∈ K L , there exists t∗ such that
‖T (t∗)x‖X < 1 for all x, ‖x‖X = 1. Thus, ‖T (t∗)‖ < 1 and
consequently T is an exponentially stable semigroup [3,
Theorem 2.1.6], i.e. there exist M,λ > 0 such that (16) holds.

Consider V : X → R+ as defined in (14). We have

V (x)≤
∫

∞

0
‖T (t)‖2‖x‖2

X dt ≤ M2

2λ
‖x‖2

X . (17)

Let V (x) = 0. Then ‖T (·)x‖ ≡ 0 a.e. on [0,∞). Strong
continuity of T implies that x = 0, and thus (8) holds.

Next we estimate the Lie derivative of V :

V̇u(x) = lim
h→+0

1
h
(V (φ(h,x,u))−V (x))

= lim
h→+0

1
h

(∫ ∞

0
‖T (t)φ(h,x,u)‖2

X dt−
∫

∞

0
‖T (t)x‖2

X dt
)

= lim
h→+0

1
h

(∫ ∞

0

∥∥∥T (t)
(

T (h)x+
∫ h

0
T (h− r)Bu(r)dr

)∥∥∥2

X
dt

−
∫

∞

0
‖T (t)x‖2

X dt
)

= lim
h→+0

1
h

(∫ ∞

0

∥∥∥T (t +h)x+T (t)
∫ h

0
T (h− r)Bu(r)dr

∥∥∥2

X
dt

−
∫

∞

0
‖T (t)x‖2

X dt
)

≤ lim
h→+0

1
h

(∫ ∞

0

(∥∥∥T (t +h)x
∥∥∥

X

+
∥∥∥T (t)

∫ h

0
T (h− r)Bu(r)dr

∥∥∥
X

)2
dt−

∫
∞

0
‖T (t)x‖2

X dt
)

=I1 + I2,

where

I1 := lim
h→+0

1
h

(∫ ∞

0
‖T (t +h)x‖2

X dt−
∫

∞

0
‖T (t)x‖2

X dt
)

and

I2 := lim
h→+0

1
h

∫
∞

0

(
2‖T (t +h)x‖X

∥∥∥T (t)
∫ h

0
T (h− r)Bu(r)dr

∥∥∥
X

+
∥∥∥T (t)

∫ h

0
T (h− r)Bu(r)dr

∥∥∥2

X

)
dt.

Let us compute I1:

I1 = lim
h→+0

1
h

(∫ ∞

h
‖T (t)x‖2

X dt−
∫

∞

0
‖T (t)x‖2

X dt
)

= lim
h→+0

−1
h

∫ h

0
‖T (t)x‖2

X dt

= −‖x‖2
X .

Now we proceed with I2:

I2 = lim
h→+0

∫
∞

0
2
∥∥∥T (t +h)x

∥∥∥
X

∥∥∥T (t)
1
h

∫ h

0
T (h− r)Bu(r)dr

∥∥∥
X

dt

+ lim
h→+0

∫
∞

0

1
h

∥∥∥T (t)
∫ h

0
T (h− r)Bu(r)dr

∥∥∥2

X
dt.

The limit of the second term equals zero since

lim
h→+0

∫
∞

0

1
h

∥∥∥T (t)
∫ h

0
T (h− r)Bu(r)dr

∥∥∥2

X
dt

≤ lim
h→+0

∫
∞

0

1
h

M4e−2λ t‖B‖‖u‖U h2dt

=0.

To compute the limit of the first term, note that

2
∥∥∥T (t +h)x

∥∥∥
X

∥∥∥T (t)
1
h

∫ h

0
T (h− r)Bu(r)dr

∥∥∥
X

≤2M‖x‖X‖T (t)‖M‖B‖ sup
r∈[0,h]

‖u(r)‖U

≤2M3‖x‖X‖B‖‖u‖U e−λ t .

and thus we can apply the dominated convergence theorem.
Together with Lemma 1 and Youngs’ inequality this leads to

I2 =
∫

∞

0
2‖T (t)x‖X‖T (t)Bu(0)‖X dt

≤
∫

∞

0
ε‖T (t)x‖2

X +
1
ε
‖T (t)Bu(0)‖2

X dt

≤
∫

∞

0
ε‖T (t)‖2dt‖x‖2

X +
1
ε

∫
∞

0
‖T (t)‖2‖Bu(0)‖2

X dt

≤ εM2

2λ
‖x‖2

X +
M2

2λε
‖B‖2‖u(0)‖2

U ,

for any ε > 0.
Overall, we obtain that ∀x ∈ X , ∀u ∈U and for all ε > 0

the inequality (15) holds. Considering ε < 2λ

M2 this shows that
V is a non-coercive ISS Lyapunov function for (12).

Remark 2: The ISS Lyapunov function V defined in (14)
is not coercive in general. Noncoercivity of V defined by
(14) implies that the system

ẋ = Ax, y = x

is not exactly observable on [0,+∞) (although we can
measure the full state!), see [3, Corollary 4.1.14]. The reason
for this is that for any given exponential decay rate there are
states that decay faster that this given rate, and thus we lose
a part of the information about the state ”infinitely fast”.

Under the additional assumption that

‖T (t)x‖X ≥M2e−λ2t‖x‖X (18)

for some M2,λ2 > 0 and for all x ∈ X , V defined in (14) is
a coercive ISS-Lyapunov function for (12), since

V (x)≥ α1‖x‖2
X (19)

holds for some α1 > 0. �
Below we provide another construction of ISS Lyapunov

functions for the system (12) with bounded input operators.
This is based on a standard construction in the analysis of
C0-semigroups, see e.g. [17, Eq. (5.14)].

For exponentially stable C0-semigroup T there exist
M,λ > 0 such that the estimate (16) holds. Choose γ > 0
such that γ−λ < 0. Then

V γ(x) := max
s≥0
‖eγsT (s)x‖X (20)

defines an equivalent norm on X , for which we have

V γ(T (t)x) = max
s≥0
‖eγsT (s)T (t)x‖X

= e−γt max
s≥0
‖eγ(s+t)T (s+ t)x‖X ≤ e−γtV γ(x) . (21)

Based on this inequality we obtain the following statement
for ISS Lyapunov functions.
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Proposition 3: Let (12) be 0-UGASs. Let M,λ > 0 be
such that (16) holds and let 0 < γ < λ . Then V γ : X → R+,
defined by (20) is a coercive ISS Lyapunov function for (12).
In particular, for any u ∈U , x ∈ X , we have the dissipation
inequality

V̇ γ
u (x)≤−γ V γ(x)+V γ(Bu(0)) . (22)

Proof: In order to obtain the infinitesimal estimate, we
compute, using the triangle inequality as V γ is a norm, the
estimate (21) and Lemma 1,

V̇ γ
u (x) = lim

h→+0

1
h
(V γ(φ(h,x,u))−V γ(x))

= lim
h→+0

1
h

(
V γ

(
T (h)x+

∫ h

0
T (h− r)Bu(r)dr

)
−V γ(x)

)
≤ lim

h→+0

1
h

(
V γ

(
T (h)x

)
+V γ

(∫ h

0
T (h− r)Bu(r)dr

)
−V γ(x)

)
≤ lim

h→+0

1
h

(
(e−γh−1)V γ(x)+V γ

(∫ h

0
T (h− r)Bu(r)dr

))
≤− γ V γ(x)+V γ(Bu(0)) .

This shows V γ is an ISS-Lyapunov function and that (22)
holds. Coercivity is clear by construction.

Finally we can state the main result of this section:
Theorem 4: Let B : U→ X be an arbitrary bounded linear

operator. The following statements are equivalent:
(i) (12) is ISS

(ii) (12) is 0-UGAS
(iii) T (·) is an exponentially stable semigroup
(iv) V defined in (14) is a (not necessarily coercive) ISS

Lyapunov function for (12).
(v) V γ defined in (20) is a coercive ISS Lyapunov function

for (12).
Proof: Equivalence between items (i) and (ii) can be

easily derived from the variation of constants formula. The
implications (ii) ⇒ (iii) ⇒ (iv) follow from Proposition 2.
Item (iv) implies (iii) due to Datko’s Lemma, see [3, Lemma
5.1.2, Theorem 5.1.3, p. 215]. Implication (iii)⇒ (ii) is clear.
(ii) implies (v) due to Proposition 3 and (v) implies (i) by
Proposition 1.

IV. BILINEAR SYSTEMS

Now we turn our attention to bilinear systems of the
form (2). Note that this class includes systems with C linear
in both variables and bounded in the sense that ‖C‖ :=
sup‖x‖X=1,‖u‖U=1 ‖C(x,u)‖X < ∞ (then K = ‖C‖ and ξ (r) = r
for all r ∈ R+ in (3)).

We have the following bilinear counterpart to Proposi-
tion 2:

Proposition 5: Let (2) be 0-UGASs and let V be defined
as in (14). Then W : X → R+, defined as

W (x) = ln(1+V (x)), (23)

is an (in general non-coercive) iISS Lyapunov function for
(12).

If T satisfies (18) for some M2,λ2 > 0 and for all x ∈ X ,
then W is a coercive iISS Lyapunov function for (2).

Proof: Let (12) be 0-UGASs. Then T (·) is an expo-
nentially stable semigroup and thus there exist M,λ > 0 so
that (16) holds.

The chain rule implies

Ẇu(x) =
1

1+V (x)
V̇u(x). (24)

In order to compute V̇u(x) we perform the same derivations
as in the previous theorem with the difference, that instead
of Bu(t) we need to consider Bu(t)+C(x(t),u(t)). Then we
obtain for any ε > 0 the estimate:

V̇u(x) ≤ −‖x‖2
X +

∫
∞

0
ε‖T (t)‖2dt‖x‖2

X

+
1
ε

∫
∞

0
‖T (t)‖2‖Bu(0)+C(x,u(0))‖2

X dt

≤
(

εM2

2λ
−1
)
‖x‖2

X

+
M2

2λε

(
‖B‖2‖u(0)‖2

U +‖C(x,u(0))‖2
X

)
≤

(
εM2

2λ
−1
)
‖x‖2

X

+
M2

2λε

(
‖B‖2‖u(0)‖2

U +K2‖x‖2
X ξ

2(‖u(0)‖U )
)

Due to (24) we obtain

Ẇu(x) ≤
(

εM2

2λ
−1
) ‖x‖2

X
1+V (x)

+
M2

2λε

‖B‖2‖u(0)‖2
U

1+V (x)

+
M2

2λε

1
1+V (x)

K2‖x‖2
X ξ

2(‖u(0)‖U )

≤
(

εM2

2λ
−1
) ‖x‖2

X

1+ M2

2λ
‖x‖2

X

+
M2

2λε
‖B‖2‖u(0)‖2

U

+
M2K2

2λε

‖x‖2
X

1+α1‖x‖2
X

ξ
2(‖u(0)‖U )

≤
(

εM2

2λ
−1
) ‖x‖2

X

1+ M2

2λ
‖x‖2

X

+
M2

2λε
‖B‖2‖u(0)‖2

U

+
M2K2

2λεα1
ξ

2(‖u(0)‖U ),

where we have estimated V from below by (19).
Considering ε ∈ (0, 2λ

M2 ) we see that W is an iISS Lyapunov
function for (2).

Finally, we state a converse iISS Lyapunov theorem for
bilinear systems.

Theorem 6: Let B : U → X be a bounded linear operator
and let C satisfy (3). The following statements are equivalent:

(i) (2) is iISS
(ii) (2) is 0-UGAS

(iii) T (·) is an exponentially stable semigroup
(iv) W defined in (23) is a (not necessarily coercive) iISS

Lyapunov function for (12).
Proof: Equivalence between items (i) and (ii) has been

proved in [14, Theorem 7]. The implications (ii) ⇒ (iii) ⇒
(iv) follow from Proposition 5. Item (iv) implies (iii) due
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to Datko’s Lemma, see [3, Lemma 5.1.2, Theorem 5.1.3, p.
215]. Implication (iii) ⇒ (ii) is clear.

If W is a coercive iISS Lyapunov function, then Proposi-
tion 1 already implies iISS of (2).

V. UNBOUNDED INPUT OPERATORS

Having obtained Lyapunov characterizations for linear and
bilinear systems with bounded input operators and bilinear-
ities satisfying (3), we consider again a linear system (12),
but now we do not assume anymore that B is a bounded
operator.

Pick any z ∈ ρ(A) (the resolvent set of A) and define X−1
to be the completion of X w.r.t. the norm

‖x‖−1 = ‖(zI−A)−1x‖X .

Note that X−1 is a Banach space and X is dense in X−1. It
is known that the space X−1 does not depend on the choice
of z ∈ ρ(A) and different choices of z give rise to equivalent
norms on X−1.

The operator B : U → X can now be viewed as a bounded
operator B ∈ L(U,X−1) and the semigroup T (·) can be
extended to the C0-semigroup T−1(·): T−1(t) ∈ L(X−1). In
particular, for all x∈X we have T (t)x= T−1(t)x for all t ≥ 0.
The generator of T−1 is A−1 (which is the extension of A).

Thus instead of (12), we can study the system

ẋ = A−1x+Bu,

the solution of which is given by

φ(t,x,u) = T−1(t)x+
∫ t

0
T−1(t− s)Bu(s)ds. (25)

For any t > 0 and u ∈U it holds that∫ t

0
T−1(t− s)Bu(s)ds ∈ X−1.

In order to ensure that the solution, corresponding to x ∈ X
will stay in X for all inputs u ∈U it is natural to assume∫ t

0
T−1(t− s)Bu(s)ds ∈ X

for all u and all t. If B satisfies this condition, B is called
an ∞-admissible control (input) operator [21], [10]. In other
words, the control operator B is ∞-admissible, if∥∥∥∥∫ t

0
T (s)Bu(s)ds

∥∥∥∥
X
≤ ht sup

s∈[0,t]
‖u(s)‖U (26)

holds for all u ∈ U , all t ≥ 0 and some constant ht > 0
dependent on t. If h does not depend on t, then B is called
infinite-time ∞-admissible operator.

The basic characterization of ISS for (12) with unbounded
input operators is given by

Proposition 7: The following notions are equivalent for
systems (12):

1) ISS
2) 0-UGASs + infinite-time ∞-admissibility of B
3) 0-UGASs + ∞-admissibility of B

Proof: The equivalence between 1) and 2) follows by
considering u ≡ 0 and φ0 ≡ 0. The equivalence between 2)

and 3) holds since for 0-UGASs systems (i.e. for exponen-
tially stable semigroups T ) infinite-time ∞-admissibility of
B and ∞-admissibility of B are equivalent notions, see [8,
Lemma 1.1] (in a dual form).

It seems that the technique of proof used in Proposition 2
is not sharp enough to treat the case of linear systems
with admissible input operators. However, we may hope to
achieve some results also in the latter case, as the following
considerations show.

Let X be a Hilbert space with a scalar product 〈·, ·〉. Then
V can be equivalently written [3, Theorem 5.1.3, p. 217] as

V (x) = 〈Px,x〉 , (27)

where P ∈ L(X) is a positive operator (i.e. P is self-adjoint
and 〈Px,x〉 > 0 for all x 6= 0), which is a solution of the
Lyapunov equation

〈Ax,Px〉+ 〈Px,Ax〉=−〈x,x〉 , x ∈ D(A). (28)

Next we formally differentiate V for x ∈ D(A) and u ∈U
(the proof is not strict, since Bu exists only for u ∈ D(B);
however, it is possible to give a strict (but longer) argument
using the definition (10)):

V̇u(x) = 〈P(Ax+Bu),x〉+ 〈Px,Ax+Bu〉
= −‖x‖2

X + 〈PBu,x〉+ 〈Px,Bu〉
= −‖x‖2

X +2〈PBu,x〉 . (29)

In the above estimates we used the facts that P is an self-
adjoint operator and solves the Lyapunov equation (28).
The last transition is important since although Bu /∈ X for
u /∈ D(B), but if PB ∈ L(U,X), then PBu ∈ X for all u ∈U .
Consequently, if PB ∈ L(U,X) we can proceed with

V̇u(x)≤−(1− ε)‖x‖2
X +

1
ε
‖PB‖2‖u‖2

U , (30)

which holds for all x ∈D(A), all u ∈U and all ε > 0. Using
density argument one can prove that (30) holds for all x∈ X .

VI. EXAMPLE

Consider the system (12) with the state space

X = l2(N) :=
{

x = {xk}∞
k=1 : ‖x‖X =

( ∞

∑
k=1

x2
k

)1/2
< ∞

}
.

endowed in the usual way with the scalar product 〈·, ·〉. Let
U := R (the field of scalars).

Let (12) be diagonal, i.e. let Aek = −λkek, where ek is
the k-th unity vector of l2(N) and λk ∈R. For simplicity we
assume that λk < λk+1 for all k and λk→ ∞ as k→ ∞. Also
assume that A generates an exponentially stable semigroup,
i.e. there exists ε > 0: λk > ε for all k > 01.

We are going to find an ISS Lyapunov function for this
system. We consider two cases: bounded and unbounded
input operators. First let B be an arbitrary operator in
L(U,X).

1The idea to use this system arose after a personal communication with
Birgit Jacob from the University of Wuppertal, who considered this system
in order to show certain other properties of infinite-dimensional ISS systems.
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The generator A : x 7→∑
∞
k=1−λk 〈x,ek〉ek is self-adjoint as

well as its inverse A−1 : x 7→∑
∞
k=1− 1

λk
〈x,ek〉ek. Since λk > ε

for some ε > 0, A−1 is bounded. Thus the solution of (28)
is given by P = − 1

2 A−1 > 0, which is a (bounded) positive
operator.

The Lyapunov function V given by (27) is equal to

V (x) = 〈Px,x〉=
∞

∑
k=1

1
2λk
〈x,ek〉2 . (31)

It is easy to see that P (as well as V ) is not coercive since
λk→ ∞ as k→ ∞.

However, for this example it is easy to find a coercive ISS
Lyapunov function V2:

V2 : x 7→ 〈x,x〉= ‖x‖2
X .

Using the definition of A we see that the Lyapunov inequality

〈Ax,x〉+ 〈x,Ax〉 ≤ −λ 〈x,x〉 , x ∈ D(A) (32)

holds, where λ := infk≥1 λk. In turn, this implies the follow-
ing estimates for x ∈ D(A) and any ε > 0:

V̇2,u(x) ≤ −λ‖x‖2
X +2〈x,Bu〉

≤ −λ‖x‖2
X +2‖x‖X‖B‖‖u‖U

≤ −(λ − ε)‖x‖2
X +

1
ε
‖B‖2‖u‖2

U .

Using density arguments one can show that the last inequality
is valid for all x ∈ X , which implies for ε < λ that V2 is a
coercive ISS Lyapunov function for (12) with our operator
A and for any B ∈ L(U,X).

Now let us assume that B is merely an admissible operator.
Since 0 ∈ ρ(A), X−1 is equal to

X−1 :=
{
{xk}∞

k=1 :
∞

∑
k=1

|xk|2
λ 2

k
< ∞

}
.

Since U =R, every operator B∈ L(U,X−1) can be identified
with a sequence {bk} in X−1. It can be shown that

Lemma 3: B is ∞-admissible for T ⇔ ∑
∞
k=1

|bk|2
λ 2

k
< ∞.

Now let us consider the product PB, where P is a solution
(31) of the Lyapunov equation (28). Clearly,

PBu =
1
2

∞

∑
k=1

bk

λk
u.

Thus,

‖PBu‖X =
1
2

( ∞

∑
k=1

|bk|2

λ 2
k

)1/2
|u|= M|u|,

with a finite M, due to admissibility of the operator B and
Lemma 3. Thus, PB ∈ L(U,X) and the estimate (29) shows
that V defined by (27) is a non-coercive ISS Lyapunov
function for our system for any admissible operator B.

Remark 4: Interestingly, V2 : x 7→ ‖x‖2
X , which is a coer-

cive ISS Lyapunov function for the above example for any
bounded B is no longer an ISS Lyapunov function for the
same system with any admissible unbounded B.

VII. CONCLUSIONS

We have derived converse ISS/iISS Lyapunov theorems for
linear and bilinear systems over Banach spaces with bounded
input operators. In Sections V, VI we have shown by means
of an example that the situation is getting more complex if
systems with unbounded admissible operators are considered.
A Lyapunov characterization of ISS for systems (1) with
unbounded admissible B remains an open problem.
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