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1. INTRODUCTION

We study converse Lyapunov theorems for robust stability
of nonlinear infinite-dimensional systems with external
inputs and we are interested both in uniform global asymp-
totic stability (UGAS) as well as input-to-state stability
(ISS). Uniform global asymptotic stability is one of the
central concepts in dynamical systems theory and dates
back to the original works by Lyapunov. ISS was first
introduced in the seminal paper Sontag (1989) and has
since become an indispensable tool in robust nonlinear
control with applications to robust stabilization of non-
linear systems Freeman and Kokotovic (2008), design of
nonlinear observers Andrieu and Praly (2009), analysis of
large-scale networks Jiang et al. (1994); Dashkovskiy et al.
(2010) and numerous other branches of nonlinear control
Kokotović and Arcak (2001). The success of ISS theory
of ordinary differential equations and the need of proper
tools for robust stability analysis of partial differential
equations motivated the development of ISS theory in
infinite-dimensional setting Dashkovskiy and Mironchenko
(2013); Mironchenko and Ito (2016); Mazenc and Prieur
(2011); Jayawardhana et al. (2008); Karafyllis and Krstic
(2015); Karafyllis and Jiang (2011a); Mironchenko (2016).

Converse Lyapunov theorems for UGAS systems have
many applications to other problems in stability theory
and they have been proved in various contexts, Henry
(1981); Deimling (1992); Karafyllis and Jiang (2011b);
Clarke et al. (1998); Kellett (2015); Schönlein (2015); Teel
and Praly (2000). For us the main motivation were the
papers Lin et al. (1996); Sontag and Wang (1995), in which
converse UGAS Lyapunov theorems have been applied in
order to prove, in the case of ordinary differential equations
(ODEs), the equivalence between ISS and the existence of
a smooth ISS Lyapunov function. This result along with
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further restatements of ISS in terms of other stability
notions Sontag and Wang (1995, 1996) and small-gain
theorems Jiang et al. (1994); Dashkovskiy et al. (2010) is at
the heart of ISS theory of systems of ordinary differential
equations.

The paper can be divided into two parts. First, we study
Lyapunov criteria for UGAS. In Section 2.1 we prove
that existence of a non-coercive (positive definite, but
not necessarily uniformly bounded from below) Lyapunov
function ensures UGAS of a nonlinear infinite-dimensional
system provided the system cannot grow arbitrarily fast on
finite time-intervals. This result is obtained using uniform
Barbalat-like estimates. Next, in Section 2.2 we give a
novel ”integral” construction of a non-coercive Lipschitz
continuous Lyapunov function for a UGAS system with the
Lipschitz continuous flow map. This is achieved using ideas
from (Karafyllis and Jiang, 2011b, Section 3.4), which in
turn are based on earlier local converse Lyapunov theo-
rems, see e.g. (Yoshizawa, 1966, Theorem 19.3), (Henry,
1981, Theorem 4.2.1) and on using Sontags’ KL-Lemma
(Sontag, 1998, Proposition 7).

The second part of the paper is devoted to applications
of converse Lyapunov theorems to the characterization of
ISS for a class of infinite-dimensional systems. The main
two lines of research within infinite-dimensional ISS theory
are the development of a general ISS theory of evolution
equations in Banach spaces and the application of ISS
ideas to the stability analysis and control of specific im-
portant partial differential equations (PDEs). The results
of the first line of research include small-gain theorems
for interconnected infinite-dimensional systems and their
applications to nonlinear interconnected parabolic PDEs
over Sobolev spaces Dashkovskiy and Mironchenko (2013);
Mironchenko and Ito (2015), characterizations of local and
global ISS properties Mironchenko (2016); Mironchenko
and Wirth (2016) etc. In the second line of research, for
instance, constructions of ISS Lyapunov functions for non-
linear parabolic systems over Lp-spaces Mazenc and Prieur



(2011), for linear time-variant systems of conservation
laws Prieur and Mazenc (2012), for nonlinear Kuramoto-
Sivashinsky equation Ahmadi et al. (2016) have been ob-
tained. Non-Lyapunov methods were successfully applied
to linear parabolic systems with boundary disturbances in
Karafyllis and Krstic (2015).

In Section 3 we follow the first line of research and
prove that ISS is equivalent to existence of a coercive
Lipschitz continuous ISS Lyapunov function for infinite-
dimensional systems over Banach spaces. To this end
we exploit the method from Sontag and Wang (1995)
and converse Lyapunov theorems for global asymptotic
stability of systems with disturbances from Karafyllis
and Jiang (2011b). We show that ISS is equivalent to
the existence of a globally stabilizing feedback which is
robust with respect to multiplicative actuator disturbances
of bounded magnitude (weak uniform robust stability,
WURS).

We conclude the paper in Section 4.

Next we introduce some notation. Let R+ := [0,∞).

Definition 1. For the formulation of stability properties
the following classes of functions are useful:

P := {γ : R+ → R+ | γ is continuous, γ(r) = 0⇔ r = 0}
K := {γ ∈ P | γ is strictly increasing}
K∞ := {γ ∈ K | γ is unbounded}
L := {γ : R+ → R+ | γ is continuous and strictly

decreasing with lim
t→∞

γ(t) = 0}
KL := {β : R+ × R+ → R+ | β is continuous,

β(·, t) ∈ K, β(r, ·) ∈ L, ∀t ≥ 0, ∀r > 0}

2. LYAPUNOV THEORY FOR SYSTEMS WITH
TIME-VARYING PARAMETERS

In this paper we consider abstract axiomatically defined
time-invariant and forward-complete control systems.

Definition 2. Consider the triple Σ = (X,D, φ), consisting
of

• A normed linear space (X, ‖ · ‖X), called the state
space, endowed with the norm ‖ · ‖X .
• A set of disturbance values D, which is a nonempty

subset of a normed linear space Sd.
• A space of disturbances D ⊂ {f : R+ → D} satisfying

the following two axioms.
The axiom of concatenation is defined by the re-

quirement that for all d1, d2 ∈ D and for all t > 0 the
concatenation of d1 and d2 at time t

d(τ) :=

{
d1(τ), if τ ∈ [0, t],

d2(τ − t), otherwise,
(1)

belongs to D.
The axiom of shift invariance states that for all

d ∈ D and all τ ≥ 0 the time shift d(·+ τ) is in D.
• A transition map φ : R+ ×X ×D → X.

The triple Σ is called a (forward-complete) control system,
if the following properties hold:

(Σ1) Forward-completeness: for every (x, d) ∈ X ×D and
for all t ≥ 0 the value φ(t, x, d) is defined and finite.

(Σ2) The identity property: for every (x, d) ∈ X × D it
holds that φ(0, x, d) = x.

(Σ3) Causality: for every (t, x, d) ∈ R+×X ×D, for every

d̃ ∈ D, such that d(s) = d̃(s), s ∈ [0, t] it holds that

φ(t, x, d) = φ(t, x, d̃).
(Σ4) Continuity: for each (x, d) ∈ X × D the map t 7→

φ(t, x, d) is continuous.
(Σ5) The cocycle property: for all t, h ≥ 0, for all x ∈ X,

d ∈ D we have φ(h, φ(t, x, d), d(t+ ·)) = φ(t+h, x, d).

Here φ(t, x, d) denotes the state of a system at the moment
t ∈ R+ corresponding to initial condition x ∈ X and the
disturbance d ∈ D.

Definition 3. We say that the flow of Σ = (X,D, φ) is
Lipschitz continuous on compact intervals, if for any τ > 0
and any R > 0 there exists L > 0 so that for any x, y ∈ X:
‖x‖X ≤ R, ‖y‖X ≤ R, for all t ∈ [0, τ ] and for all d ∈ D it
holds that

‖φ(t, x, d)− φ(t, y, d)‖X ≤ L‖x− y‖X . (2)

We exploit the following stronger version of forward com-
pleteness:

Definition 4. The system Σ = (X,D, φ) is called robustly
forward complete (RFC) if for any C > 0 and any τ > 0
it holds that

sup
‖x‖X≤C, d∈D, t∈[0,τ ]

‖φ(t, x, d)‖X <∞.

The condition of robust forward completeness is satisfied
by large classes of infinite-dimensional systems. In Defini-
tion 14 below we introduce a sufficient condition.

Definition 5. We call 0 ∈ X an equilibrium point of the
control system Σ = (X,D, φ), if φ(t, 0, d) = 0 for all t ≥ 0
and all d ∈ D.

Definition 6. We call 0 ∈ X a robust equilibrium point of
the control system Σ = (X,D, φ), if

(i) 0 is an equilibrium point of Σ
(ii) for every ε > 0 and for any h > 0 there exists

δ = δ(ε, h) > 0, so that

t ∈ [0, h], ‖x‖X ≤ δ, d ∈ D ⇒ ‖φ(t, x, d)‖X ≤ ε. (3)

Example 7. Let X = D = R and let D = L∞(R+, D). The
following examples show the relations between forward-
completeness, robust forward-completeness and robustness
of the equilibrium point.

(1) Σ is RFC, but 0 is not REP of Σ:

ẋ(t) = |d(t)|(x(t)− x3(t)).

(2) Σ is forward-complete, but not RFC and 0 is not
REP:

ẋ = dx.
(3) 0 is REP of Σ, Σ is forward-complete, but not RFC:

ẋ =
1

|d|+ 1
x+ dmax{|x| − 1, 0}.

(4) 0 is REP of Σ and Σ is RFC:

ẋ =
1

|d|+ 1
x.

For systems with a Lipschitz continuous flow the equi-
librium point is necessarily robust, which is clear as the
robustness property is essentially a continuity property of
the flow at 0.

In this paper we investigate the following stability property
of abstract control systems:



Definition 8. The system Σ = (X,D, φ) is called uni-
formly globally asymptotically stable (UGAS) if there
exists a β ∈ KL such that

‖φ(t, x, d)‖X ≤ β(‖x‖X , t) ∀d ∈ D, ∀x ∈ X, ∀t ≥ 0. (4)

As we will see a concept of uniform global attractivity is
ultimately helpful for verification of UGAS.

Definition 9. A control system Σ = (X,D, φ) is called
uniformly globally attractive, if for any r, ε > 0 there exists
τ = τ(r, ε) so that for all d ∈ D it holds that

‖x‖X ≤ r, t ≥ τ(r, ε) ⇒ ‖φ(t, x, d)‖X ≤ ε. (5)

We need the following characterization of UGAS property,
which can be found e.g. in (Karafyllis and Jiang, 2011b,
Theorem 2.2):

Proposition 10. Let Σ = (X,D, φ) be a control system and
let 0 be a robust equilibrium point for Σ. Then Σ is UGAS
if and only if Σ is robustly forward complete and uniformly
globally attractive.

It may be surprising at first glance that the characteriza-
tion of UGAS does not directly require a stability property,
whereas in the usual context of ODEs it is well known that
attractivity on its own does not imply asymptotic stability.
The point to notice here is that uniform attractivity is
a far stronger concept than attractivity as it requires
convergence rates that are uniform for all initial conditions
from a ball around the fixed point. This excludes examples
that are attractive but not stable.

2.1 Direct Lyapunov theorems

Lyapunov functions provide a predominant tool to study
UGAS. In our context they are defined as follows. Let
V : X → R be continuous. Given x ∈ X, d ∈ D,
we consider the upper Dini derivative of the continuous
function t 7→ V (φ(t, x, d)) at t = 0:

V̇d(x) := lim
t→+0

1

t
(V (φ(t, x, d))− V (x)). (6)

We call this the Dini derivative of V along the trajectories
of Σ.

Definition 11. A continuous function V : X → R+ is
called a Lyapunov function for a control system Σ =
(X,D, φ), if there exist ψ1, ψ2 ∈ K∞ and α ∈ K∞ such
that

ψ1(‖x‖X) ≤ V (x) ≤ ψ2(‖x‖X) ∀x ∈ X (7)

holds and the Dini derivative of V along the trajectories
of Σ satisfies

V̇d(x) ≤ −α(‖x‖X) (8)

for all x ∈ X and all d ∈ D. We call V a noncoercive
Lyapunov function, if instead of (7) we have V (0) = 0 and

0 < V (x) ≤ ψ2(‖x‖X) ∀x ∈ X\{0}. (9)

If we want to emphasize that (7) holds we will also speak
of a coercive Lyapunov function.

The following result is well-known:

Proposition 12. Let Σ = (X,D, φ) be a control system. If
there exists a coercive Lyapunov function for Σ, then Σ is
UGAS.

The proof of Proposition 12 is analogous to the proof of
its finite-dimensional counterpart, see (Lin et al., 1996,
p. 160). Note however, that we use continuous Lyapunov
functions and the trajectories of the system (19) are merely
continuous, therefore we cannot use the standard compari-
son principle, see (Lin et al., 1996, Lemma 4.4) in the proof
of Proposition 12. Instead one can exploit the following
generalized comparison principle from (Mironchenko and
Ito, 2016, Lemma 1):

Lemma 13. Let α ∈ P and consider the differential in-
equality

ẏ(t) ≤ −α(y(t)) , t > 0. (10)
There exists a β ∈ KL so that for all continuous functions
y : R+ → R+ satisfying (10) in the sense of the upper Dini
derivative (defined in (6)) we have

y(t) ≤ β(y(0), t) ∀t ≥ 0. (11)

Next we show that already the existence of a non-coercive
Lyapunov function is sufficient for UGAS of a control
system provided another mild assumption is satisfied.

Definition 14. Consider a system Σ = (X,D, φ). We say
that Σ satisfies a uniform growth bound, if there exists a
continuous function χ : R2

+ → R+ such that χ(r, ·) ∈ K∞
for all r ≥ 0 and such that for all x ∈ X, d ∈ D and all
t ≥ 0 we have

‖φ(t, x, d)‖X − ‖x‖X ≤ χ(‖x‖X , t). (12)

We note that the uniform bounded growth condition
immediately implies that 0 is a robust equilibrium point,
if it is an equilibrium point in the sense of Definition 5.
In addition, a system Σ is RFC if it satisfies the uniform
growth bound.

The condition of a uniform growth bound thus requires
that solutions cannot grow arbitrarily fast on a finite
interval. On the other, arbitrarily fast decay is admitted
(and can in fact be observed in many infinite-dimensional
systems). This assumption is quite mild and is satisfied by
large classes of infinite-dimensional systems. In the linear
case, even for C0-semigroups with unbounded input opera-
tors and uniformly bounded disturbances this is implied by
admissibility assumptions, and also for nonlinear infinite
dimensional systems this is common. The system class
treated in Section 3 satisfies this property as long as there
is a uniform bound on the inputs.

In the following result we need variants of the fundamental
theorem of calculus for Dini derivatives. For this see Saks
(1947); Hagood and Thomson (2006).

Theorem 15. (Noncoercive Lyapunov UGAS theo-
rem) Consider a system Σ = (X,D, φ) and assume that V
is a noncoercive Lyapunov function. If Σ satisfies a uniform
growth bound then Σ is UGAS.

Proof. Let V be a non-coercive Lyapunov function and
let α ∈ K be such that we have the decay estimate (8).
Along any trajectory φ of Σ we have the inequality

d

dt
V (φ(t, x, d)) ≤ −α(‖φ(t, x, d)‖X).

It follows from (Saks, 1947, pp. 204-205) that

V (φ(t, x, d))− V (x)≤−
∫ t

0

α(‖φ(s, x, d)‖X)ds,



which implies that for all t ≥ 0 we have∫ t

0

α(‖φ(s, x, d)‖X)ds≤ V (x). (13)

We by showing stability. Seeking a contradiction, assume
that Σ is not uniformly stable in x∗ = 0. Then there exists
an ε > 0 and sequences {xk}k∈N in X, {dk}k∈N in D, and
tk ≥ 0 such that xk → 0 as k →∞ and

‖φ(tk, xk, dk)‖X = ε ∀k ≥ 1.

By the bound on V given by (9) if follows that V (xk)→ 0.
Let χ be the function characterizing the growth bound.
Appealing to continuity we may choose τ > 0 such that
χ(r, τ) ≤ ε/2 for all 0 ≤ r ≤ ε. Using the growth bound
condition we obtain that for all k ∈ N and for all t ∈ [tk −
τ, tk] we have ‖φ(t, xk, dk)‖X > ε or

‖φ(t, xk, dk)‖X ≥

‖φ(tk, xk, dk)‖X−χ(‖φ(t, xk, dk)‖X , tk−t) ≥ ε−
ε

2
=
ε

2
.

Now (13) implies for every k

V (xk) ≥
∫ tk

tk−τ
α(‖φ(s, x, d)‖X)ds ≥ α(ε/2)τ > 0.

This contradiction proves uniform stability of Σ.

The proof of uniform global attractivity uses the fact
that stability has been established in combination with
arguments similar to the ones discussed so far. It is omitted
for reasons of space. �

2.2 Converse Lyapunov theorems

In this section we consider two constructions of Lyapunov
functions for UGAS systems Σ = (X,D, φ). First we recall
a construction of Lipschitz continuous coercive Lyapunov
functions, due to Karafyllis and Jiang (2011b), and then
we use these ideas in order to derive another construction
of a global non-coercive Lyapunov function for a UGAS
control system.

The following theorem has been shown in (Karafyllis and
Jiang, 2011b, Section 3.4). To formulate it we need the
following constructions. First, by Sontag’s KL lemma,
given the UGAS bound β ∈ KL, we can find α1, α2 ∈ K∞
such that

β(r, t) ≤ α2(α1(r)e−t), ∀r ≥ 0, ∀t ≥ 0. (14)

Furthermore, by (Karafyllis and Jiang, 2011b, p.130) we
may choose a globally Lipschitz ρ ∈ K∞ with Lipschitz
constant L = 1 such that ρ ≤ α−12 . We also need, for
k ∈ N, the functions Gk : R+ → R+ defined by

Gk(r) := max

{
r − 1

k
, 0

}
, r ≥ 0.

Theorem 16. Consider a control system Σ = (X,D, φ)
with a flow, which is Lipschitz continuous on compact
intervals. If Σ is UGAS, then for any η ∈ (0, 1) there exists
a sequence of positive real numbers ak, k = 1, 2, . . . so that
W η : X → R+, defined by

W η(x) :=

∞∑
k=1

akV
η
k (x) ∀x ∈ X, (15)

where, using Gk and an arbitrary ρ as discussed above,

V ηk (x) := sup
d∈D

max
s∈[0,+∞)

eηsGk
(
ρ(‖φ(s, x, d)‖X)

)
. (16)

is a UGAS Lyapunov function for (19) which is Lipschitz
continuous on bounded balls.

The proof of this result is based on earlier local converse
Lyapunov theorems, see e.g. (Yoshizawa, 1966, Theorem
19.3), (Henry, 1981, Theorem 4.2.1) and on using Sontags’
KL-Lemma (Sontag, 1998, Proposition 7).

Next, exploiting ideas from (Karafyllis and Jiang, 2011b,
Section 3.4) we construct a Lipschitz continuous non-
coercive Lyapunov function for a UGAS control system
using integration instead of maximization.

Theorem 17. Consider a system Σ = (X,D, φ) with a flow
which is Lipschitz continuous on compact intervals. If Σ
is UGAS, then there exists a sequence of positive real
numbers ak, k = 1, 2, . . . , so that W : X → R+, defined
by

W (x) :=

∞∑
k=1

akVk(x) ∀x ∈ X. (17)

where, using Gk and an arbitrary ρ as above,

Vk(x) = sup
d∈D

∫ ∞
0

Gk
(
ρ
(
‖φ(t, x, d)‖X

))
dt. (18)

is a non-coercive UGAS Lyapunov function for (19) which
is Lipschitz continuous on bounded balls.

3. INPUT-TO-STATE STABILITY AND WEAK
ROBUST STABILITY

In this section we consider infinite-dimensional systems of
the form

ẋ(t) = Ax(t) + f(x(t), u(t)), x(t) ∈ X,u(t) ∈ U, (19)

where A generates a strongly continuous semigroup (of
bounded operators), X is a Banach space and U is a
normed linear space of external inputs. As the space of
admissible inputs we consider the space U of globally
bounded, piecewise continuous functions from R+ to U .

In this paper we consider mild solutions of (19), i.e.
solutions of the integral equation

x(t) = T (t)x(0) +

∫ t

0

T (t− s)f(x(s), u(s))ds (20)

belonging to the class C([0, τ ], X) for certain τ > 0. Here
{T (t), t ≥ 0} is a C0-semigroup over X, generated by A.

We will need the following lemma:

Lemma 18. Let:

(i) (19) be robustly forward-complete.
(ii) f be Lipschitz continuous on bounded subsets of X,

uniformly w.r.t. the second argument.

Then (19) has a flow which is Lipschitz continuous on
compact intervals.

In what follows we suppose that the nonlinearity f satisfies
the following assumption:

Assumption 1. Let f : X × U → X be bi-Lipschitz
continuous on bounded subsets, which means that two
following properties hold:

(1) ∀C > 0 ∃L1
f (C) > 0, such that ∀x, y ∈ X : ‖x‖X ≤

C, ‖y‖X ≤ C and ∀v ∈ U , it holds that

‖f(x, v)− f(y, v)‖X ≤ L1
f (C)‖x− y‖X . (21)



(2) ∀C > 0 ∃L2
f (C) > 0, such that ∀u, v ∈ U : ‖u‖U ≤

C, ‖v‖U ≤ C and ∀x ∈ X, it holds that

‖f(x, u)− f(x, v)‖X ≤ L2
f (C)‖u− v‖U . (22)

Due to standard arguments, Assumption 1 implies that
mild solutions corresponding to any x(0) ∈ X and any
u ∈ U exist and are unique (actually, the second condition
is too strong for existence and uniqueness, but we need it
for the further development).

Now we are going to treat u not as a ’disturbance’, but as
an external input, which may have a significant influence
on the dynamics of the system. For the stability analysis of
such systems a fundamental role is played by the concept
of input-to-state stability, which is defined as follows:

Definition 19. System (19) is called input-to-state stable
(ISS), if it is forward-complete and there exist β ∈ KL
and γ ∈ K such that ∀x ∈ X, ∀u ∈ U and ∀t ≥ 0 the
following holds

‖φ(t, x, u)‖X ≤ β(‖x‖X , t) + γ(‖u‖U ). (23)

Similarly to the case of uniform global asymptotic stability,
we can define a notion of ISS Lyapunov functions:

Definition 20. A continuous function V : X → R+ is
called a (coercive) ISS Lyapunov function, if there exist
ψ1, ψ2 ∈ K∞, α ∈ P and χ ∈ K so that

ψ1(‖x‖X) ≤ V (x) ≤ ψ2(‖x‖X) ∀x ∈ X (24)

and so that the Dini derivative of V along the trajectories
of the system (19) satisfies the implication

‖x‖X ≥ χ(‖u(0)‖U ) ⇒ V̇u(x) ≤ −α(‖x‖X) (25)

for all x ∈ X and u ∈ U .

As in the case of UGAS, we have the following result, see
(Dashkovskiy and Mironchenko, 2013, Theorem 1).

Proposition 21. If there exists an ISS Lyapunov function
for (19), then (19) is ISS.

We are going to establish a converse ISS Lyapunov the-
orem for the systems (19) and relate ISS to the robust
stability of (19). On this way we follow the method devel-
oped in Sontag and Wang (1995) for systems described by
ordinary differential equations.

In order to formalize the robust stability property of (19)
we consider in (19) feedback laws of the form

u(t) := d(t)ϕ(x(t)),

where d ∈ D = {d : R+ → D, piecewise continuous},
D = {d ∈ U : ‖d‖U ≤ 1}, and ϕ : X → R+ is Lipschitz
continuous on bounded balls.

Applying this feedback law to (19) we obtain the system

ẋ(t) = Ax(t) + f(x(t), d(t)ϕ(x(t)))

=:Ax(t) + g(x(t), d(t)). (26)

Let us denote the solution of (26) at time t, starting at
x ∈ X and with disturbance d ∈ D by φϕ(t, x, d). On
the interval of its existence φϕ(t, x, d) coincides with the
solution of (19) for the input u(t) = d(t)ϕ(x(t)). 1

1 Forward-completeness of (19) does not imply forward-
completeness of (26). For example, consider ẋ = −x + u,
u(t) = d · x2(t) for d > 0.

Now, in order to use the converse UGAS Lyapunov theo-
rems from the previous section, we need to ensure that the
flow of (26) is Lipschitz continuous on compact intervals.

The next lemma shows that g in (26) is well-behaved.

Lemma 22. Let f be bi-Lipschitz continuous on bounded
balls. Then g is Lipschitz continuous on bounded subsets
of X, uniformly with respect to the second argument, i.e.
∀C > 0 ∃Lg(C) > 0, such that ∀x, y : ‖x‖X ≤ C, ‖y‖X ≤
C, ∀d ∈ D, it holds that

‖g(x, d)− g(y, d)‖X ≤ Lg(C)‖x− y‖X . (27)

Remark 23. Lipschitz continuous feedbacks do not nec-
essarily lead to Lipschitz continuous g if f is not Lip-
schitz w.r.t. inputs. Consider e.g. ẋ(t) = (u(t))1/3 and
u(t) := x(t).

Definition 24. System (19) is called weakly uniformly ro-
bustly asymptotically stable (WURS), if there exist a
function ϕ : X → R+, Lipschitz continuous on bounded
balls, and a ψ ∈ K∞ such that ϕ(x) ≥ ψ(‖x‖X) and (26)
is uniformly globally asymptotically stable over D.

The objective of this section is to prove that for systems
(19) the notions depicted in Figure 1 are equivalent.

(19) is ISS

(19) is WURS ∃ LF for (26)

∃ ISS-LF for (19)

Lemma 25

Theorem 16

Lemma 27

Proposition 21

Fig. 1. ISS Converse Lyapunov Theorem

First we show in Lemma 25 that ISS implies WURS. Next
we apply Theorem 16 in order to prove that WURS of (19)
implies the existence of a Lipschitz continuous coercive ISS
Lyapunov function for (19). Finally, the direct Lyapunov
theorem (Proposition 21) finishes the proof.

As depicted in Figure 1, we start with

Lemma 25. If (19) is ISS, then it is WURS.

The following proposition establishes that (26) is a well-
defined system with nice properties of the flow:

Proposition 26. Assume that

(i) (19) is forward-complete.
(ii) f is bi-Lipschitz on bounded subsets of X

(iii) (19) is WURS.

Then (26) is a control system with a flow which is Lipschitz
continuous on compact intervals.

The next ingredient for the proof of our main result is:

Lemma 27. If system (19) is WURS and Assumption 1 is
satisfied then there exists an ISS Lyapunov function for
(19), which is Lipschitz continuous on bounded balls.

The key step in the proof of this Lemma is an application
of Theorem 16. Finally, we can characterize ISS in the
following way:

Theorem 28. Let Assumption 1 hold. Then the following
statements are equivalent:



(1) (19) is ISS
(2) (19) is WURS
(3) There exists a Lipschitz continuous on bounded balls

coercive ISS Lyapunov function for (19).

Proof. Follows from Prop. 21 and Lemmas 25 and 27. �

4. CONCLUSIONS

We have given new constructions of global Lipschitz con-
tinuous Lyapunov functions for infinite dimensional sys-
tems with disturbances and have applied the obtained
results in order to prove that input-to-state stability of the
infinite-dimensional systems is (under reasonable assump-
tions) equivalent to the existence of a Lipschitz continuous
coercive ISS-Lyapunov function.
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