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Abstract

We prove that input-to-state stability (ISS) of nonlinear systems over Banach spaces is equivalent to existence of a
coercive Lipschitz continuous ISS Lyapunov function for this system. For linear infinite-dimensional systems, we show
that ISS is equivalent to existence of a non-coercive ISS Lyapunov function and provide two simpler constructions of
coercive and non-coercive ISS Lyapunov functions for input-to-state stable linear systems.
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Input-to-state stability (ISS) was introduced by Sontag
in his seminal paper [28] and has since become a backbone
of robust nonlinear control theory. Applications of ISS
include robust stabilization of nonlinear systems [7], design
of nonlinear observers [2], analysis of large-scale networks
[11, 6] and numerous other branches of nonlinear control
[16].

The success of ISS theory of ordinary differential equa-
tions (ODEs) and the need for proper tools for robust
stability analysis of partial differential equations (PDEs)
motivated the development of ISS theory in the infinite-
dimensional setting [5, 21, 18, 10, 14, 12, 19].

The two main lines of research within infinite-dimensional
ISS theory are the development of a general ISS theory of
evolution equations in Banach spaces and the application
of ISS to stability analysis and control of particular im-
portant PDEs.

The results in the first area include for instance small-
gain theorems for interconnected infinite-dimensional sys-
tems and their applications to nonlinear interconnected
parabolic PDEs over Sobolev spaces [5, 20] and character-
izations of local and global ISS properties [19, 25]. Within
the second line of research, constructions of ISS Lyapunov
functions for nonlinear parabolic systems over Lp-spaces
[18], for linear time-variant systems of conservation laws
[27], for nonlinear Kuramoto-Sivashinsky equation [1] have
been investigated. Non-Lyapunov methods were success-
fully applied to linear parabolic systems with boundary
disturbances in [15].

In this paper, we follow the first line of research and
prove converse Lyapunov theorems for ISS of linear and
semilinear evolution equations in Banach spaces. For us
the primary motivation comes from the papers [17, 29],
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in which converse UGAS Lyapunov theorems have been
applied to prove, in the case of ODEs, the equivalence be-
tween ISS and the existence of a smooth ISS Lyapunov
function. This result along with further restatements of
ISS in terms of other stability notions [29, 30] and small-
gain theorems [11, 6] is at the heart of ISS theory of sys-
tems of ordinary differential equations.

In Section 1 using the method from [29] and converse
Lyapunov theorems for global asymptotic stability of sys-
tems with disturbances from [13] we prove that ISS is
equivalent to the existence of a coercive, Lipschitz contin-
uous ISS Lyapunov function. Along the way, we show
that ISS is equivalent to the existence of a globally stabi-
lizing feedback which is robust to multiplicative actuator
disturbances of bounded magnitude (weak uniform robust
stability, WURS).

In Section 2 we provide simpler constructions of coer-
cive and non-coercive ISS Lyapunov functions for linear
infinite-dimensional systems with bounded input opera-
tors. In particular, we show that the existence of non-
coercive ISS Lyapunov functions is already sufficient for
ISS of linear systems with bounded input operators.

Whether the existence of a non-coercive ISS Lyapunov
function is sufficient for ISS of infinite-dimensional non-
linear systems is not completely clear right now, although
some positive results based on non-Lyapunov characteri-
zations of ISS property have been achieved in [25]. For
systems without disturbances, it was shown in [24] that
non-coercive Lyapunov functions ensure uniform global
asymptotic stability of the system, provided certain ad-
ditional mild conditions hold. Extension of these results
to the systems with inputs is a challenging question for
future research.

In Section 3 we conclude the results of the paper. Some
of the results of this paper have been presented at 54th
IEEE Conference on Decision and Control (CDC 2015)
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[22] and at 10th IFAC Symposium on Nonlinear Control
Systems (NOLCOS 2016) [23].

Let R+ := [0,∞). For the formulation of stability prop-
erties the following classes of functions are useful:

P := {γ : R+ → R+| γ is continuous,
γ(r) = 0⇔ r = 0} ,

K := {γ ∈ P | γ is strictly increasing} ,
K∞ := {γ ∈ K | γ is unbounded} ,
L := {γ : R+ → R+ | γ is continuous and strictly

decreasing with lim
t→∞

γ(t) = 0},
KL := {β : R+ × R+ → R+ | β is continuous, ,

β(·, t) ∈ K, β(r, ·) ∈ L, ∀t ≥ 0, ∀r > 0} .

For a normed space X, we denote the closed ball of

radius r around 0 by Br or B
X

r if we want to make the
space clear.

Given normed space X,W , we call a function f : X →
W locally Lipschitz continuous, if for all r > 0 there exists
a constant Lr such that

‖f(x)− f(y)‖W ≤ Lr‖x− y‖X ∀x, y ∈ Br.

In the finite dimensional case, local Lipschitz continuity
is sometimes defined using neighborhoods of points, and
in this case, this is of course equivalent. Note that in the
infinite-dimensional case it is necessary to go to a defi-
nition on bounded balls as these are not compact. The
terminology we use here is consistent with [26, p. 185].
This concept is called “Lipschitz continuity on bounded
balls” in [3].

1. Input-to-state stability and weak uniform ro-
bust stability

In this paper we consider infinite-dimensional systems
of the form

ẋ(t) = Ax(t) + f(x(t), u(t)), x(t) ∈ X,u(t) ∈ U, (1)

whereA generates a strongly continuous semigroup of boun-
ded linear operators, X is a Banach space and U is a
normed linear space of input values. As the space of admis-
sible inputs, we consider the space U of globally bounded,
piecewise continuous functions from R+ to U .

In this paper we consider mild solutions of (1), i.e.
solutions of the integral equation

x(t) = Ttx(0) +

∫ t

0

Tt−sf(x(s), u(s))ds (2)

belonging to the class C([0, τ ], X) for certain τ > 0. Here
{Tt, t ≥ 0} is the C0-semigroup over X, generated by A.
For the notions from the theory of C0-semigroups and its
applications to evolution equations we refer to [4, 3]. In
the sequel, we will write φ(t, x, u) to denote the solution
corresponding to the initial condition φ(0, x, u) = x and
the input u ∈ U .

In the remainder of the paper we suppose that the non-
linearity f satisfies the following assumption:

Assumption 1. Let f : X × U → X be bi-Lipschitz con-
tinuous on bounded subsets, which means that two follow-
ing properties hold:

1. ∀C > 0 ∃L1
f (C) > 0, such that ∀x, y ∈ X with

‖x‖X ≤ C, ‖y‖X ≤ C and ∀v ∈ U , it holds that

‖f(x, v)− f(y, v)‖X ≤ L1
f (C)‖x− y‖X . (3)

2. ∀C > 0 ∃L2
f (C) > 0, such that ∀u, v ∈ U with

‖u‖U ≤ C, ‖v‖U ≤ C and ∀x ∈ X, it holds that

‖f(x, u)− f(x, v)‖X ≤ L2
f (C)‖u− v‖U . (4)

Due to standard arguments, Assumption 1 implies that
mild solutions corresponding to any x(0) ∈ X and any
u ∈ U exist and are unique (actually, the second condition
is too strong for mere existence and uniqueness, but we
need it for the further development).

We call the system forward complete, if for all initial
conditions x ∈ X and all u ∈ U the solution exists on R+.

We treat u as an external input, which may have sig-
nificant influence on the dynamics of the system. For the
stability analysis of such systems a fundamental role is
played by the concept of input-to-state stability, which
unifies external and internal stability concepts.

Definition 1. System (1) is called input-to-state stable
(ISS), if it is forward complete and there exist β ∈ KL
and γ ∈ K such that ∀x ∈ X, ∀u ∈ U and ∀t ≥ 0 the
following inequality holds

‖φ(t, x, u)‖X ≤ β(‖x‖X , t) + γ(‖u‖U ). (5)

A key tool to study ISS is an ISS Lyapunov function.

Definition 2. A continuous function V : X → R+ is
called a non-coercive ISS Lyapunov function, if V (0) = 0
and if there exist ψ2 ∈ K∞, α ∈ P and χ ∈ K so that

0 < V (x) ≤ ψ2(‖x‖X) ∀x ∈ X \ {0}. (6)

and so that the Dini derivative of V along the trajectories
of the system (1) satisfies the implication

‖x‖X ≥ χ(‖u(0)‖U ) ⇒ V̇u(x) ≤ −α(‖x‖X) (7)

for all x ∈ X and u ∈ U , where

V̇u(x) = lim
t→+0

1

t

(
V (φ(t, x, u))− V (x)

)
. (8)

If, in addition, there exists ψ1 ∈ K∞ such that

ψ1(‖x‖X) ≤ V (x) ≤ ψ2(‖x‖X) ∀x ∈ X, (9)

then V is called a coercive ISS Lyapunov function.

In Definition 2 we defined ISS Lyapunov function in
the so-called implication form. For another (dissipative)
definition of ISS Lyapunov functions and for the relation
between these definitions please consult [21]. We have the
following result, see [5, Theorem 1].
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Proposition 1. If there exists a coercive ISS Lyapunov
function for (1), then (1) is ISS.

We intend to show that

ISS of (1) implies existence of a coercive, locally
Lipschitz continuous Lyapunov function for (1).

On this way we follow the method developed in [29]
for systems described by ODEs. In order to formalize the
robust stability property of (1), we consider the problem
of global stabilization of (1) by means of feedback laws
which are subject to multiplicative disturbances with a
magnitude bounded by 1. To this end let ϕ : X → R+ be
locally Lipschitz continuous and consider inputs

u(t) := d(t)ϕ(x(t)), t ≥ 0, (10)

where d ∈ D := {d : R+ → D, piecewise continuous},
D := {d ∈ U : ‖d‖U ≤ 1}.

Applying this feedback law to (1) we obtain the system

ẋ(t) = Ax(t) + f(x(t), d(t)ϕ(x(t)))

=: Ax(t) + g(x(t), d(t)). (11)

Let us denote the solution of (11) at time t, starting at
x ∈ X and with disturbance d ∈ D by φϕ(t, x, d). On its
interval of existence, φϕ(t, x, d) coincides with the solution
of (1) for the input u(t) = d(t)ϕ(x(t)). 1

1.1. Basic properties of the closed-loop system

The next lemma shows that g in (11) is Lipschitz con-
tinuous.

Lemma 1. Let f be locally bi-Lipschitz continuous. Then
g is Lipschitz continuous on bounded subsets of X, uni-
formly with respect to the second argument, i.e. ∀C >
0 ∃Lg(C) > 0, such that ∀x, y ∈ BC and ∀d ∈ D, it holds
that

‖g(x, d)− g(y, d)‖X ≤ Lg(C)‖x− y‖X . (12)

Proof. Pick an arbitrary C > 0, any x, y ∈ BC , and any
d ∈ D. It holds

‖g(x, d)− g(y, d)‖X = ‖f(x, dϕ(x))− f(y, dϕ(y))‖X
≤ ‖f(x, dϕ(x))− f(y, dϕ(x))‖X

+ ‖f(y, dϕ(x))− f(y, dϕ(y))‖X .

Since ϕ is Lipschitz continuous, it is bounded on BC by a
bound R. According to Assumption 1 and as ‖d‖U ≤ 1,
we can upper bound the first summand by L1

f (R)‖x−y‖X
and the second by L2

f (R)|ϕ(x) − ϕ(y)|. The claim now
follows from the local Lipschitz continuity of ϕ.

1Forward completeness of (1) does not imply forward complete-
ness of (11). For example, consider ẋ = −x + u, u(t) = d · x2(t) for
d > 0.

In particular, Lemma 1 shows that the system (11) is
well-posed, i.e. its solution exists and is unique for any
initial condition and any disturbance d.

Remark 1. Lipschitz continuous feedbacks do not neces-
sarily lead to Lipschitz continuous g if f is not Lipschitz
with respect to inputs. Consider e.g. ẋ(t) = (u(t))1/3 and
u(t) := x(t).

Definition 3. System (11) is called robustly forward com-
plete (RFC) if for any C > 0 and any τ > 0 it holds that

sup
‖x‖X≤C, d∈D, t∈[0,τ ]

‖φϕ(t, x, d)‖X <∞.

Definition 4. We say that the flow of (11) is Lipschitz
continuous on compact intervals, if for any τ > 0 and any

R > 0 there exists L > 0 so that for any x, y ∈ BXR , for
all t ∈ [0, τ ] and for all d ∈ D it holds that

‖φϕ(t, x, d)− φϕ(t, y, d)‖X ≤ L‖x− y‖X . (13)

We will need the following result, see [24, Lemma 4.6],
showing the regularity properties of the system (11).

Lemma 2. Assume that

(i) (11) is robustly forward complete.

(ii) g is Lipschitz continuous on bounded subsets of X,
uniformly w.r.t. the second argument.

Then (11) has a flow which is Lipschitz continuous on
compact intervals.

Definition 5. System (11) is called uniformly globally
asymptotically stable (UGAS) if there exists a β ∈ KL
such that

d ∈ D, x ∈ X, t ≥ 0 ⇒ ‖φϕ(t, x, d)‖X ≤ β(‖x‖X , t).
(14)

UGAS can be characterized with the help of uniform
global attractivity.

Definition 6. System (11) is called uniformly globally at-
tractive (UGATT), if for any r, ε > 0 there exists τ =
τ(r, ε) so that for all d ∈ D it holds that

‖x‖X ≤ r, t ≥ τ(r, ε) ⇒ ‖φϕ(t, x, d)‖X ≤ ε. (15)

Definition 7. System (11) is called uniformly globally sta-
ble (UGS), if there exists σ ∈ K∞ so that

d ∈ D, x ∈ X, t ≥ 0 ⇒ ‖φϕ(t, x, d)‖X ≤ σ(‖x‖X). (16)

The following characterization of UGAS follows easily
from [13, Theorem 2.2].

Proposition 2. System (11) is UGAS if and only if (11)
is UGATT and UGS.

Coercive Lyapunov functions corresponding to UGAS
property are defined as follows:
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Definition 8. A continuous function V : X → R+ is
called a Lyapunov function for (11), if there exist ψ1, ψ2 ∈
K∞ and α ∈ K∞ such that

ψ1(‖x‖X) ≤ V (x) ≤ ψ2(‖x‖X) ∀x ∈ X (17)

holds and Dini derivative of V along the trajectories of the
system (11) satisfies

V̇d(x) ≤ −α(‖x‖X) (18)

for all x ∈ X, and all d ∈ D.

The following converse Lyapunov theorem will be cru-
cial for our developments [13, Section 3.4]:

Theorem 3. Let (11) be UGAS and let its flow be Lip-
schitz continuous on compact intervals, then (1) admits a
locally Lipschitz continuous Lyapunov function.

We will need the following property, which formalizes
the robustness of (1) with respect to the feedback (10).

Definition 9. System (1) is called weakly uniformly ro-
bustly asymptotically stable (WURS), if there exist a lo-
cally Lipschitz ϕ : X → R+ and ψ ∈ K∞ such that
ϕ(x) ≥ ψ(‖x‖X) and (11) is uniformly globally asymp-
totically stable with respect to D.

The next proposition shows how the WURS property
of system (1) reflects the regularity of the solutions of (11).

Proposition 4. Consider a forward complete system (1).
Assume that

(i) f is bi-Lipschitz on bounded subsets of X;

(ii) (1) is WURS.

Then for any ϕ satisfying the conditions of Definition 9,
the closed-loop system (11) has a flow, which is Lipschitz
continuous on compact intervals.

Proof. Since (1) is WURS and ϕ is a stabilizing feedback
as required in Definition 9, system (11) is forward complete
and UGAS. Let β ∈ KL be a bound as in (14). Then, for
any C > 0 and any τ > 0

sup
‖x‖X≤C, d∈D, t∈[0,τ ]

‖φϕ(t, x, d)‖X ≤ β(C, 0) <∞.

Assumption (i) together with Lemma 1 imply that g
is locally Lipschitz continuous uniformly in the second ar-
gument. Thus, all assumptions of Lemma 2 are satisfied,
and the claim follows.

1.2. Main result

The objective of this paper is to prove that for system
(1) (at least with bi-Lipschitz nonlinearities) the notions
depicted in Figure 1 are equivalent.

Remark 2. The reader familiar with the results in [29]
will notice that our assumptions on the dependence on
u are stronger than in the finite-dimensional case. For
system (1) we need to ensure existence of solutions if a
feedback is applied. In the finite-dimensional case, it is
sufficient to assume continuity by Peano’s theorem. This
guarantees existence but not uniqueness, but for the stabil-
ity arguments, this is not a major drawback. For system
(1) continuity is in general not sufficient for the existence
of solutions [8, 9].

(1) is ISS

(1) is WURS ∃ LF for (11)

∃ ISS-LF for (1)

Lemma 4

Theorem 3

Lemma 5

Proposition 1

Figure 1: ISS Converse Lyapunov Theorem

First, we show in Lemma 3 that ISS implies WURS.
Next, we apply Theorem 3 to prove that WURS of (1)
implies the existence of a Lipschitz continuous coercive ISS
Lyapunov function for (1). Finally, the direct Lyapunov
theorem (Proposition 1) completes the proof.

Lemma 3. If (1) is ISS, then (1) is WURS.

Proof. The proof goes along the lines of [29, Lemma 2.12].
Let (1) be ISS. In order to prove that (1) is WURS we

are going to use Proposition 2.
Since (1) is ISS, there exist β ∈ KL and γ ∈ K∞ so

that (5) holds for any t ≥ 0, x ∈ X, u ∈ U . Define
α(r) := β(r, 0), for r ∈ R+. Substituting u ≡ 0 and t = 0
into (5) we see that α(r) ≥ r for all r ∈ R+.

Pick any σ ∈ K∞ so that σ(r) ≤ γ−1
(
1
4α
−1( 2

3r)
)

for all
r ≥ 0. We may choose locally Lipschitz continuous maps
ϕ : X → R+ and ψ ∈ K∞ such that ψ(‖x‖X) ≤ ϕ(x) ≤
σ(‖x‖X) (just pick a locally Lipschitz continuous ψ ∈ K∞
and set ϕ(x) := ψ(‖x‖X) for all x ∈ X, which guarantees
that ϕ is locally Lipschitz continuous).

We are going to show that for all x ∈ X, all t ≥ 0 and
all d ∈ D it holds that

γ
(∥∥d(t)ϕ(φϕ(t, x, d))

∥∥
U

)
≤ ‖x‖X

2
. (19)

First we show that (19) holds for all times t ≥ 0 small
enough. Since α−1(r) ≤ r for all r > 0, we have

γ
(∥∥d(t)ϕ(φϕ(t, x, d))

∥∥
U

)
≤ γ

(
σ(‖φϕ(t, x, d)‖X)

)
≤ 1

4
α−1

(2

3
‖φϕ(t, x, d)‖X

)
≤ 1

6
‖φϕ(t, x, d)‖X .

For any d ∈ D and any x ∈ X the latter expression can
be made smaller than 1

2‖x‖X by choosing t small enough,
since φϕ is continuous in t.
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Now pick any d ∈ D, x ∈ X and define t∗ = t∗(x, d) by

t∗ := inf

{
t ≥ 0 : γ

(
‖d(t)‖U

∣∣ϕ(φϕ(t, x, d))
∣∣) > ‖x‖X

2

}
.

By the first step we know t∗ > 0. Assume that t∗ < ∞
(otherwise our claim is true). Then (19) holds for all t ∈
[0, t∗). Thus, for all t ∈ [0, t∗) it holds that

‖φϕ(t, x, d)‖X ≤ β(‖x‖X , t) +
‖x‖X

2

≤ β(‖x‖X , 0) +
1

2
α(‖x‖X)

=
3

2
α(‖x‖X).

Using this estimate we find out that

γ
(
‖d(t∗)‖U

∣∣ϕ(φϕ(t∗, x, d))
∣∣) ≤ 1

4
α−1

(2

3
‖φϕ(t∗, x, d)‖X

)
≤ 1

4
α−1(‖x‖X)

≤ 1

4
‖x‖X .

But this contradicts the definition of t∗. Thus, t∗ = +∞.
Now we see that for any x ∈ X, any d ∈ D and all

t ≥ 0 we have

‖φϕ(t, x, d)‖X ≤ β(‖x‖X , t) +
‖x‖X

2
, (20)

which shows uniform global stability of (11).
Since β ∈ KL, there exists a t1 = t1(‖x‖X) so that

β(‖x‖X , t1) ≤ ‖x‖X4 and consequently

d ∈ D, x ∈ X, t ≥ 0 ⇒ ‖φϕ(t, x, d)‖X ≤
3

4
‖x‖X .

By induction we obtain that there exists a strictly in-
creasing sequence of times {tk}∞k=1, which depends on the
norm of ‖x‖X but is independent of x and d so that

‖φϕ(t, x, d)‖X ≤
(3

4

)k
‖x‖X ,

for all x ∈ X, any d ∈ D and all t ≥ tk.
This means that for all ε > 0 and for all δ > 0 there

exist a time τ = τ(δ) so that for all x ∈ X with ‖x‖X ≤ δ,
for all d ∈ D and for all t ≥ τ we have

‖φϕ(t, x, d)‖X ≤ ε.

This shows uniform global attractivity of (11).
Now we are ready to apply Proposition 2, which shows

that (11) is UGAS and thus (1) is WURS.

Lemma 4. If (1) is WURS and Assumption 1 is satisfied
then there exists a locally Lipschitz continuous ISS Lya-
punov function for (1).

Proof. Let (1) be WURS, which means that (11) is UGAS
over D for suitable ϕ,ψ chosen in accordance with Defi-
nition 9. Proposition 4 and Theorem 3 imply that there
exists a locally Lipschitz continuous Lyapunov function
V : X → R+, satisfying (17) for certain ψ1, ψ2 ∈ K∞
and whose Lie derivative along the solutions of (11) for all
x ∈ X and for all d ∈ D satisfies the estimate

V̇d(x) ≤ −α(V (x)). (21)

This is equivalent to the fact that

V̇u(x) ≤ −α(V (x)). (22)

holds for all x ∈ X and all u ∈ U satisfying ‖u‖U ≤ ϕ(x).
This automatically implies that (22) holds for all x ∈ X
and all u ∈ U with ‖u‖U ≤ ψ(‖x‖X).

In other words, V is an ISS Lyapunov function for (1)
in an implication form with Lyapunov gain χ := ψ−1.

We conclude our investigation with the following char-
acterization of ISS property:

Theorem 5. Let Assumption 1 be fulfilled. Then the fol-
lowing statements are equivalent:

1. (1) is ISS.

2. (1) is WURS.

3. There exists a coercive ISS Lyapunov function for
(1) which is locally Lipschitz continuous.

Proof. The claim follows from Proposition 1 and Lem-
mas 3 and 4.

Theorem 5 shows that ISS is equivalent to the existence
of a Lipschitz continuous coercive ISS Lyapunov function.
At the same time, the question whether the existence of
a non-coercive ISS Lyapunov function is sufficient for ISS
of (1) remains open. This question is essentially infinite-
dimensional, since in the ODE case non-coercive Lyapunov
functions are automatically coercive, at least locally. In
contrast to ODEs, for linear infinite-dimensional systems,
non-coercive ISS Lyapunov functions naturally arise when
one constructs Lyapunov functions by solving Lyapunov
operator equation, see [4, Theorem 5.1.3 ]. Hence it is
of great interest to study criteria of ISS in terms of non-
coercive ISS Lyapunov functions. In the next section, we
show some preliminary results in this direction. An exten-
sive treatment of this topic for nonlinear systems without
inputs has been performed in [24].

2. Linear systems

In this section, we derive a converse Lyapunov theorem
for linear systems with a bounded input operator B of the
form

ẋ = Ax+Bu. (23)

The assumptions on A are as before. We start with a
definition.
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Definition 10. System (1) is globally asymptotically sta-
ble at zero uniformly with respect to the state (0-UGAS),
if there exists a β ∈ KL, such that

x ∈ X, t ≥ 0 ⇒ ‖φ(t, x, 0)‖X ≤ β(‖x‖X , t). (24)

Now we proceed with a technical lemma; its proof is
straightforward and is omitted.

Lemma 5. Let B ∈ L(U,X) and let T be a C0-semigroup.
Then for any u ∈ U it holds that

lim
h→+0

1

h

∫ h

0

Th−sBu(s)ds = Bu(0). (25)

The main technical result of this section is as follows:

Proposition 6. If (23) is 0-UGAS, then V : X → R+,
defined as

V (x) =

∫ ∞
0

‖Ttx‖2Xdt (26)

is a non-coercive ISS Lyapunov function for (23) which is
locally Lipschitz continuous. Moreover, ∀x ∈ X, ∀u ∈ U
and ∀ε > 0 it holds that

V̇u(x) ≤ −‖x‖2X +
εM2

2λ
‖x‖2X +

M2

2λε
‖B‖2‖u(0)‖2U , (27)

where M,λ > 0 are so that

‖Tt‖ ≤Me−λt. (28)

Proof. Let (23) be 0-UGAS and pick u ≡ 0. Then (24)
implies ‖Ttx‖X ≤ β(1, t) for all t ≥ 0 and for all x with
‖x‖X = 1. Since β ∈ KL, there exists a t∗ such that
‖Tt∗x‖X < 1 for all x, ‖x‖X = 1. Thus, ‖Tt∗‖ < 1 and
consequently T is an exponentially stable semigroup [4,
Theorem 2.1.6], i.e. there exist M,λ > 0 such that (28)
holds.

Consider V : X → R+ as defined in (26). We have

V (x) ≤
∫ ∞
0

‖Tt‖2‖x‖2Xdt ≤
M2

2λ
‖x‖2X . (29)

Let V (x) = 0. Then ‖Ttx‖X ≡ 0 a.e. on [0,∞). Strong
continuity of T implies that x = 0, and thus (6) holds.

Next we estimate the Dini derivative of V :

V̇u(x) = lim
h→+0

1

h
(V (φ(h, x, u))− V (x))

= lim
h→+0

1

h

(∫ ∞
0

‖Ttφ(h, x, u)‖2Xdt−
∫ ∞
0

‖Ttx‖2Xdt
)

= lim
h→+0

1

h

(∫ ∞
0

∥∥∥Tt(Thx+

∫ h

0

Th−sBu(s)ds
)∥∥∥2

X
dt

−
∫ ∞
0

‖Ttx‖2Xdt
)

= lim
h→+0

1

h

(∫ ∞
0

∥∥∥Tt+hx+ Tt

∫ h

0

Th−sBu(s)ds
∥∥∥2
X
dt

−
∫ ∞
0

‖Ttx‖2Xdt
)

≤ lim
h→+0

1

h

(∫ ∞
0

(∥∥∥Tt+hx∥∥∥
X

+
∥∥∥Tt ∫ h

0

Th−sBu(s)ds
∥∥∥
X

)2
dt−

∫ ∞
0

‖Ttx‖2Xdt
)

=I1 + I2,

where

I1 := lim
h→+0

1

h

(∫ ∞
0

‖Tt+hx‖2Xdt−
∫ ∞
0

‖Ttx‖2Xdt
)

and

I2 := lim
h→+0

1

h

∫ ∞
0

(
2
∥∥∥Tt+hx∥∥∥

X

∥∥∥Tt ∫ h

0

Th−sBu(s)ds
∥∥∥
X

+
∥∥∥Tt ∫ h

0

Th−sBu(s)ds
∥∥∥2
X

)
dt.

Let us compute I1:

I1 = lim
h→+0

1

h

(∫ ∞
h

‖Ttx‖2Xdt−
∫ ∞
0

‖Ttx‖2Xdt
)

= lim
h→+0

− 1

h

∫ h

0

‖Ttx‖2Xdt

= −‖x‖2X .

Now we proceed with I2:

I2 = lim
h→+0

∫ ∞
0

2
∥∥∥Tt+hx∥∥∥

X

∥∥∥Tt 1

h

∫ h

0

Th−sBu(s)ds
∥∥∥
X
dt

+ lim
h→+0

∫ ∞
0

1

h

∥∥∥Tt ∫ h

0

Th−sBu(s)ds
∥∥∥2
X
dt.

The limit of the second term equals zero since

lim
h→+0

∫ ∞
0

1

h

∥∥∥Tt ∫ h

0

Th−sBu(s)ds
∥∥∥2
X
dt

≤ lim
h→+0

∫ ∞
0

1

h
M4e−2λt‖B‖‖u‖Uh2dt = 0.

To compute the limit of the first term, note that

2
∥∥∥Tt+hx∥∥∥

X

∥∥∥Tt 1

h

∫ h

0

Th−sBu(s)ds
∥∥∥
X

≤2M‖x‖X‖Tt‖M‖B‖ sup
r∈[0,h]

‖u(r)‖U

≤2M3‖x‖X‖B‖‖u‖Ue−λt.

Thus, we can apply the dominated convergence theorem.
Together with Lemma 5 and Young’s inequality this leads
to

I2 =

∫ ∞
0

2‖Ttx‖X‖TtBu(0)‖Xdt

≤
∫ ∞
0

ε‖Ttx‖2X +
1

ε
‖TtBu(0)‖2Xdt

≤
∫ ∞
0

ε‖Tt‖2dt‖x‖2X +
1

ε

∫ ∞
0

‖Tt‖2‖Bu(0)‖2Xdt

≤ εM2

2λ
‖x‖2X +

M2

2λε
‖B‖2‖u(0)‖2U ,
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for any ε > 0.
Overall, we obtain that ∀x ∈ X, ∀u ∈ U and for all

ε > 0 the inequality (27) holds. Considering ε < 2λ
M2 this

shows that V is a non-coercive ISS Lyapunov function (in
dissipative form) for (23). It can be brought into impli-
cation form (as in (7)) by choosing the Lyapunov gain
χ(s) := Rs for all s ∈ R+ and for R large enough.

It remains to show the local Lipschitz continuity of
V .Pick arbitrary r > 0 and any x, y ∈ Br. It holds that

|V (x)− V (y)| =

∣∣∣∣∣
∫ +∞

0

‖Ttx‖2X − ‖Tty‖2Xdt

∣∣∣∣∣
≤
∫ +∞

0

∣∣∣‖Ttx‖X − ‖Tty‖X ∣∣∣(‖Ttx‖X + ‖Tty‖X
)
dt

≤
∫ +∞

0

‖Ttx− Tty‖X
(
‖Ttx‖X + ‖Tty‖X

)
dt

≤
∫ +∞

0

Me−λt‖x− y‖XMe−λt(‖x‖X + ‖y‖X)dt

≤ M2r

λ
‖x− y‖X ,

which shows the Lipschitz continuity of V .

Remark 3. The ISS Lyapunov function V defined in (26)
is not coercive in general. Noncoercivity of V defined by
(26) implies that the system

ẋ = Ax, y = x

is not exactly observable on [0,+∞) (even though we can
measure the full state!), see [4, Corollary 4.1.14]. The
reason for this is that for any given exponential decay rate
there are states that decay faster than this given rate, and
thus we lose a part of the information about the state ”in-
finitely fast”.

Remark 4. Note that according to [25, Section III.B], the
existence of a non-coercive Lyapunov function satisfying
(27) ensures ISS of (23).

Below we provide another construction of ISS Lya-
punov functions for the system (23) with bounded input
operators. It is based on a standard construction in the
analysis of C0-semigroups, see e.g. [26, Eq. (5.14)].

For exponentially stable C0-semigroup T there exist
M,λ > 0 such that the estimate (28) holds. Choose γ > 0
such that γ − λ < 0. Then

V γ(x) := max
s≥0
‖eγsTsx‖X (30)

defines an equivalent norm on X, for which we have

V γ(Ttx) = max
s≥0
‖eγsTsTtx‖X

= e−γt max
s≥0
‖eγ(s+t)Ts+tx‖X ≤ e−γtV γ(x) . (31)

Based on this inequality we obtain the following statement
for ISS Lyapunov functions.

Proposition 7. Let (23) be 0-UGAS. Let M,λ > 0 be
such that (28) holds and let 0 < γ < λ. Then V γ : X →
R+, defined by (30) is a coercive ISS Lyapunov function
for (23). In particular, for any u ∈ U , x ∈ X, we have the
dissipation inequality

V̇ γu (x) ≤ −γ V γ(x) + V γ(Bu(0)) . (32)

Proof. In order to obtain the infinitesimal estimate, we
compute, using the triangle inequality (V γ is a norm), the
estimate (31), and Lemma 5,

V̇ γu (x) = lim
h→+0

1

h
(V γ(φ(h, x, u))− V γ(x))

= lim
h→+0

1

h

(
V γ
(
Thx+

∫ h

0

Th−sBu(s)ds
)
− V γ(x)

)
≤ lim
h→+0

1

h

(
V γ
(
Thx

)
+ V γ

(∫ h

0

Th−sBu(s)ds
)
− V γ(x)

)
≤ lim
h→+0

1

h

(
(e−γh − 1)V γ(x) + V γ

(∫ h

0

Th−sBu(s)ds
))

≤− γ V γ(x) + V γ(Bu(0)) .

This shows V γ is an ISS-Lyapunov function (in the dis-
sipative form) and that (32) holds. Choosing a suitable
Lyapunov gain χ ∈ K∞, one can show that (7) holds and
thus V γ is an ISS Lyapunov function in implication form.
Coercivity is evident by construction.

It remains to show Lipschitz continuity of V γ . Pick
any x, y ∈ X and assume that V γ(x) > V γ(y). Then

V γ(x)− V γ(y) = max
s≥0
‖eγsTsx‖X −max

s≥0
‖eγsTsy‖X

≤ max
s≥0

(
‖eγsTsx‖X − ‖eγsTsy‖X

)
≤ max

s≥0

∣∣‖eγsTsx‖X − ‖eγsTsy‖X ∣∣
≤ max

s≥0
‖eγsTs(x− y)‖X

≤M‖x− y‖X ,

which shows that V γ is globally Lipschitz continuous. The
case V γ(y) > V γ(x) can be treated analogously.

Finally, we can state the main result of this section:

Theorem 8. Let B ∈ L(U,X). The following statements
are equivalent:

(i) (23) is ISS.

(ii) (23) is 0-UGAS.

(iii) {Tt}t≥0 is an exponentially stable semigroup.

(iv) V defined in (26) is a (not necessarily coercive) lo-
cally Lipschitz continuous ISS Lyapunov function for
(23).

(v) V γ defined in (30) is a coercive globally Lipschitz
continuous ISS Lyapunov function for (23).
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Proof. Equivalence between items (i) and (ii) can be eas-
ily derived from the variation of constants formula. The
implications (ii) ⇒ (iii) ⇒ (iv) follow from Proposition 6.
Item (iv) implies (iii) due to Datko’s Lemma, see [4, Lemma
5.1.2, Theorem 5.1.3, p. 215]. Implication (iii) ⇒ (ii) is
clear. (ii) implies (v) due to Proposition 7 and (v) implies
(i) by Proposition 1.

3. Conclusions

We have shown that input-to-state stability of a non-
linear infinite-dimensional system is equivalent to the ex-
istence of a coercive Lipschitz continuous ISS Lyapunov
function. For linear systems, we have proposed simpler di-
rect constructions of coercive as well as non-coercive Lip-
schitz continuous ISS Lyapunov functions. Whether the
existence of a non-coercive ISS Lyapunov function is suf-
ficient for ISS of nonlinear infinite-dimensional systems,
remains an open question.
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