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Abstract— We show that the existence of a non-coercive
Lyapunov function is sufficient for uniform global asymptotic
stability (UGAS) of infinite-dimensional systems with external
disturbances provided the speed of decay is measured in terms
of the norm of the state and an additional mild assumption
is satisfied. These additional assumptions cannot be dropped
in general. However, for the special classes of systems as
evolution equations in Banach spaces with Lipschitz continuous
nonlinearities, delay systems, or linear switched systems on
Banach spaces they become much simpler to check. Moreover,
for time-delay systems we prove an alternative non-coercive
Lyapunov theorem, which is close in spirit to the Lyapunov-
Krasovskii method.
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I. INTRODUCTION

The theory of Lyapunov functions is one of the corner-
stones in the analysis and synthesis of dynamical systems.
Since its origins due to Lyapunov there have been numerous
developments leading first to sufficient and later on to nec-
essary conditions for various dynamical properties expressed
in terms of Lyapunov functions, see [26], [8], [16], [14].
Originally invented to characterize stability properties of
fixed points, or more complex attractors, Lyapunov functions
have become useful in other contexts: to derive conditions
for forward completeness of trajectories [1], to analyze
coordinate-free notions of growth rates [7], for the controller
and observer design of nonlinear systems [2], [15] etc.

In this paper we concentrate ourselves on a question of
a coercivity of Lyapunov functions. The standard definition
of a Lyapunov function V , found in many textbooks on
finite-dimensional dynamical systems, is that it should be
a continuous (or more regular) positive definite and proper
function, i.e. a function for which there exist K∞

1 functions
ψ1,ψ2,α such that

ψ1(‖x‖)≤V (x)≤ ψ2(‖x‖) ∀x ∈ X , (1)

and such that

V̇ (x)<−α(‖x‖) ∀x ∈ X\{0}, (2)
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1Increasing, unbounded, continuous, positive definite function.

where V̇ (x) is some sort of generalized derivative of V
along the trajectories of the system, see below for a precise
definition. Of course, if we have (1) then we may just as
well require that there is a γ ∈K∞ such that

V̇ (x)<−γ(V (x)), (3)

because in the presence of (1) we clearly have an equivalence
of (2) and (3).

The inequality (3) shows that V (x(t)) converges to zero
in a uniform way as t→∞ (by the ”comparison principle”),
and (1) implies that ‖x(t)‖ has the same asymptotic behavior.
This simple argument remains (up to some minor technical-
ities) the same also for infinite-dimensional systems and has
been applied for stability analysis, e.g. in [21], [6], [3].

On the other hand, converse Lyapunov theorems proved
for wide classes of infinite-dimensional systems show that
asymptotic stability guarantees the existence of a proper and
positive definite Lyapunov function.

A first inkling that this is not the complete story comes
from the study of linear systems. In a seminal paper [5]
Datko proved the following. If A is the generator of a C0-
semigroup on a Hilbert space X , then the system ẋ = Ax is
exponentially stable if and only if there is a positive definite
bilinear form on X (generated by a certain bounded positive
definite linear operator P) such that for all x∈D(A) we have
the following estimate for the scalar product of Px,Ax:

〈Px,Ax〉<−‖x‖2.

This is a natural extension of the finite-dimensional Lya-
punov inequality.

At the same time the operator P need not be coercive,
so the natural Lyapunov function V : x 7→ 〈Px,x〉 for the
linear system ẋ = Ax does not satisfy (1). In fact, there exist
exponentially stable C0-semigroups on Hilbert spaces such
that there does not exist an equivalent scalar product under
which the semigroup is a strict contraction semigroup, [4].
Hence, the non-coercivity of P cannot be avoided in general.
In this situation, it appears that the left inequality in (1) is
an artifact of the finite-dimensional origin of the theory. In
infinite dimensions it may sometimes be easier and more
natural to derive Lyapunov functions which have the weaker
property that

0 <V (x)≤ ψ2(‖x‖) , x 6= 0. (4)

In this note we thoroughly study this question. We consider
closed bounded invariant sets of systems defined on Banach
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spaces and formulate conditions for a non-coercive Lyapunov
function with respect to such an invariant set satisfying the
analogue of (4) and the decay estimate (2). We prove in Sec-
tion III that for a wide class of dynamical systems on normed
linear spaces, the existence of such a non-coercive Lyapunov
function guarantees global uniform asymptotic stability of
the invariant set provided a robust forward completeness
property is satisfied and the invariant set is robust. This is
achieved using uniform Barbalat-like estimates.

As we argue in Section IV, for some classes of systems
as evolution equations in Banach spaces or linear switched
systems in Banach spaces some of assumptions can be
dropped, which makes the applicability of non-coercive Lya-
punov functions easier. For time-delay systems we prove an
alternative non-coercive Lyapunov theorem, which is close in
spirit to the framework of Lyapunov-Krasovskii functionals.

On the other hand, from [19] we know that the results
cannot be extended much further in such a general setting.
E.g., non-coercive Lyapunov functions cannot be used in
conjunction with a decay estimate in terms of the Lyapunov
function itself as in (3), even for linear undisturbed systems
with bounded generators. Also it is a disadvantage that we
have to assume forward completeness whereas in many cases
coercive Lyapunov functions give this property for free.

Due to the page limits, the proofs of most of the results
are omitted. An extended version of this paper is currently
submitted for publication [19].

Recently non-coercive Lyapunov functions have been used
to good effect: in [17] non-coercive Lyapunov sufficient con-
ditions for practical UGAS of infinite-dimensional systems
are obtained and in [20] the counterpart of the non-coercive
Lyapunov theorem (Theorem 3.4) has been derived in the
context of infinite-dimensional input-to-state stability theory.

A. Notation

By R+ we denote the set of nonnegative real numbers.
For an arbitrary set S and n∈N the n-fold Cartesian product
is Sn := S× . . .×S. The open ball in a normed linear space
X with radius r and center in y ∈ X is denoted by Br(y) :=
{x ∈ X | ‖x− y‖X < r} (the space X in which the ball is
taken, will always be clear from the context). For short, we
denote Br := Br(0). The (norm)-closure of a set S ⊂ X will
be denoted by S. Given a closed set C ⊂ X we denote the
distance of a point x to C by |x|C := min{‖x− y‖X | y ∈C}.

For the formulation of stability properties the following
classes of comparison functions are useful, see [8], [13]:

P := {γ : R+→ R+ | γ is continuous,
γ(0) = 0 and γ(r)> 0 for r > 0}

K := {γ ∈P | γ is strictly increasing}
K∞ := {γ ∈K | γ is unbounded}
L := {γ : R+→ R+ | γ is continuous and strictly

decreasing with lim
t→∞

γ(t) = 0}
K L := {β : R+×R+→ R+ | β is continuous,

β (·, t) ∈K , ∀t ≥ 0, β (r, ·) ∈L , ∀r > 0}

II. PROBLEM STATEMENT

We consider abstract axiomatically defined time-invariant
and forward complete systems on the state space X which
are subject to shift-invariant disturbances in D .

Definition 2.1: Consider the triple Σ = (X ,D ,φ) with

(i) A normed linear space (X ,‖·‖X ), called the state space,
endowed with the norm ‖ · ‖X .

(ii) A set of disturbance values D, which is a nonempty
subset of a certain normed linear space.

(iii) A space of disturbances D ⊂ {d : R+→ D} satisfying
the following two axioms.
The axiom of shift invariance states that for all d ∈D
and all τ ≥ 0 the time shift d(·+ τ) is in D .
The axiom of concatenation is defined by the require-
ment that for all d1,d2 ∈ D and for all t > 0 the
concatenation of d1 and d2 at time t

d(τ) :=

{
d1(τ), if τ ∈ [0, t],
d2(τ− t), otherwise,

(5)

belongs to D .
(iv) A transition map φ : R+×X×D → X .

The triple Σ is called a (forward complete) dynamical system,
if the following properties hold:

(Σ1) forward completeness: for every (x,d) ∈ X×D and for
all t ≥ 0 the value φ(t,x,d) ∈ X is well-defined.

(Σ2) The identity property: for every (x,d) ∈ X×D it holds
that φ(0,x,d) = x.

(Σ3) Causality: for every (t,x,d) ∈ R+×X ×D , for every
d̃ ∈ D , such that d(s) = d̃(s), s ∈ [0, t] it holds that
φ(t,x,d) = φ(t,x, d̃).

(Σ4) Continuity: for each (x,d) ∈ X × D the map t 7→
φ(t,x,d) is continuous.

(Σ5) The cocycle property: for all t,h ≥ 0, for all x ∈ X ,
d ∈D we have φ(h,φ(t,x,d),d(t + ·)) = φ(t +h,x,d).

Here φ(t,x,d) denotes the state of a system at the moment
t ∈ R+ corresponding to the initial condition x ∈ X and the
disturbance d ∈D .

Definition 2.2: The flow of Σ = (X ,D ,φ) is called Lips-
chitz continuous on compact intervals, if for any τ > 0 and
any r > 0 there is a L > 0 s.t. for any x,y ∈ Br it holds that

t ∈ [0,τ], d ∈D ⇒ ‖φ(t,x,d)−φ(t,y,d)‖X ≤ L‖x−y‖X .
We exploit the following stronger version of forward

completeness:
Definition 2.3: The system Σ = (X ,D ,φ) is called ro-

bustly forward complete (RFC) if

R > 0 ∧ τ > 0 ⇒ sup
‖x‖X≤R, t∈[0,τ], d∈D

‖φ(t,x,d)‖X < ∞.

The condition of robust forward completeness is satisfied
by large classes of infinite-dimensional systems.

Definition 2.4: Let C ⊂ X be nonempty, closed and
bounded. We call C an invariant set of the system Σ =
(X ,D ,φ), if for all x ∈ C, t ≥ 0 and all d ∈ D we have
φ(t,x,d) ∈C.

1901



Definition 2.5: Let C⊂ X be a nonempty closed bounded
invariant set of Σ. We call C a robust invariant set if for every
ε > 0 and for any h > 0 there is a δ = δ (ε,h)> 0 such that

t ∈ [0,h], |x|C ≤ δ , d ∈D ⇒ |φ(t,x,d)|C ≤ ε. (6)
Lemma 2.6: Let Σ = (X ,D ,φ) be a system with a flow

which is Lipschitz continuous on compact intervals. If C⊂X
is an invariant set of Σ, then C is a robust invariant set of Σ.

Proof: Robustness of an invariant set is the continuity
of the function ξ : (x,h) 7→ sup

t∈[0,h], d∈D
|φ(t,x,d)|C in its first

argument at |x|C = 0. As C is bounded by assumption
we may choose a Lipschitz constant for φ on a bounded
neighborhood of C and then the claim follows directly.

The following result will be useful in the sequel.
Proposition 2.7: Consider a forward complete system Σ=

(X ,D ,φ). The following statements are equivalent:
(i) Σ is RFC and C ⊂ X is a robust invariant set for Σ.

(ii) there is a σ ∈ K∞ and a continuous function
χ : R2

+→ R+ such that χ(r, ·) ∈ K for all r > 0,
χ(0, t) = 0 for all t ∈ R+ and such that for all x ∈
X ,d ∈D and all t ≥ 0 we have

|φ(t,x,d)|C ≤ σ(|x|C)+χ(|x|C, t). (7)
In this paper we investigate the following stability prop-

erties of invariant sets of abstract systems.
Definition 2.8: Consider a system Σ = (X ,D ,φ) with a

closed, bounded invariant set C. The set C is called
(i) (locally) uniformly stable (US), if ∀ε > 0 ∃δ > 0 s.t.

|x|C ≤ δ , d ∈D , t ≥ 0 ⇒ |φ(t,x,d)|C ≤ ε. (8)

(ii) uniformly globally asymptotically stable (UGAS) if
there is a β ∈K L s.t. for all x ∈ X , d ∈D , t ≥ 0

|φ(t,x,d)|C ≤ β (|x|C, t). (9)

(iii) uniformly globally attractive (UGATT), if for any r,ε >
0 there exists τ = τ(r,ε) so that

|x|C ≤ r, d ∈D , t ≥ τ(r,ε) ⇒ |φ(t,x,d)|C ≤ ε. (10)
The relation between UGAS and UGATT is given by:
Proposition 2.9: Let Σ = (X ,D ,φ) be a control system

and let C be a robust invariant set for Σ. Then C is UGAS
if and only if C is UGATT and Σ is RFC.

Proof: Follows from [12, Theorem 2.2] when choosing
the output H(x) = |x|C.

III. NON-COERCIVE LYAPUNOV THEOREMS

Lyapunov functions provide a predominant tool to study
UGAS. In our context they are defined as follows. Recall that
for a continuous function h : R→ R the (right-hand lower)
Dini derivative at a point t is defined by, see [25],

D+h(t) := lim
τ→+0

1
τ

(
h(t + τ)−h(t)

)
. (11)

Consider a system Σ = (X ,D ,φ) and let V : X → R be
continuous. Given x ∈ X ,d ∈ D , we consider the (right-
hand lower) Dini derivative of the continuous function t 7→
V (φ(t,x,d)) at t = 0:

V̇d(x) := lim
t→+0

1
t

(
V (φ(t,x,d))−V (x)

)
. (12)

We call this the Dini derivative of V along the trajectories
of Σ.

Definition 3.1: A continuous function V : X → R+ is
called a Lyapunov function for system Σ = (X ,D ,φ) with
respect to the nonempty, closed invariant set C, if there exist
ψ1,ψ2 ∈K∞ and α ∈K such that

ψ1(|x|C)≤V (x)≤ ψ2(|x|C) ∀x ∈ X (13)

holds and the Dini derivative of V along the trajectories of
Σ satisfies

V̇d(x)≤−α(|x|C) (14)

for all x ∈ X and all d ∈ D . We call V a non-coercive
Lyapunov function, if instead of (13) we have V (0) = 0 and

0 <V (x)≤ ψ2(|x|C) ∀x ∈ (X \C). (15)
To emphasize that (13) holds we will sometimes speak of

coercive Lyapunov functions. The next result is well-known:
Proposition 3.2: Let Σ= (X ,D ,φ) be a dynamical system

with a nonempty, closed invariant set C. If there is a coercive
Lyapunov function for Σ with respect to C, then C is UGAS.

Proposition 3.2 can be proved analogously to its finite-
dimensional counterpart, see [16, p. 160]. Note however, that
we use continuous Lyapunov functions and the trajectories
of the system Σ are merely continuous, therefore we cannot
use the standard comparison principle [16, Lemma 4.4] but
need to apply a generalized comparison principle from [25,
Lemma 6.1], [18, Lemma 1].

Next we show that already the existence of a non-coercive
Lyapunov function is sufficient for UGAS of a system
provided another mild assumption is satisfied. We exploit the
following well-known property, see e.g. [24, pp. 204-205]:

Lemma 3.3: Let f ,g : [0,∞)→R be continuous. If for all
t ≥ 0 we have D+ f (t)≤−g(t), then for all t ≥ 0 it follows
that f (t)− f (0)≤−G(t) :=−

∫ t
0 g(s)ds.

Theorem 3.4: (Non-coercive UGAS Lyapunov theorem)
Consider an RFC system Σ = (X ,D ,φ). Let C ⊂ X be a
nonempty, closed, robustly invariant set for Σ. If V is a non-
coercive Lyapunov function for Σ w.r.t. C, then C is UGAS.

Proof: Let V be a non-coercive Lyapunov function and
let α ∈K be such that we have the decay estimate (14).
Along any trajectory φ of Σ we have the inequality

V̇d(t+·)(φ(t,x,d))≤−α(|φ(t,x,d)|C), ∀t ≥ 0. (16)

It follows from Lemma 3.3 that

V (φ(t,x,d))−V (x)≤−
∫ t

0
α(|φ(s,x,d)|C)ds, (17)

which implies that for all t ≥ 0 we have∫ t

0
α
(
|φ(s,x,d)|C

)
ds ≤ V (x). (18)

Step 1: (Stability) Seeking a contradiction, assume that Σ

is not uniformly stable in C. Then there exist an ε > 0 and
sequences {xk}k∈N in X , {dk}k∈N in D , and tk ≥ 0 such that
|xk|C→ 0 as k→ ∞ and

|φ(tk,xk,dk)|C = ε ∀k ≥ 1.
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By the bound on V given by (15) it follows that V (xk)→
0. Since Σ is RFC and C is a robust invariant set of Σ,
Proposition 2.7 implies that there exist σ ∈ K∞ and χ as
in item (ii) of Proposition 2.7 so that (7) holds.

Appealing to continuity of χ we may choose τ > 0 such
that χ(r,τ)≤ ε/2 for all 0≤ r ≤ ε .

Using (7) we obtain that for all k ∈ N and for all t ∈
[tk− τ, tk] we have either |φ(t,xk,dk)|C > ε or

σ
(
|φ(t,xk,dk)|C

)
≥|φ(tk,xk,dk)|C−χ

(
|φ(t,xk,dk)|C, tk− t

)
≥ε− ε

2
=

ε

2
.

Setting t := 0 in (7) and using the identity axiom (Σ2) we
see that σ(r) ≥ r for all r ≥ 0, and thus σ−1(r) ≤ r for all
r ∈ R+. Hence

min
s∈[tk−τ,tk]

|φ(s,xk,d)|C ≥min
{

ε,σ−1
(

ε

2

)}
= σ

−1
(

ε

2

)
and (18) implies for every k

V (xk)≥
∫ tk

tk−τ

α
(
|φ(s,xk,dk)|C

)
ds≥ α ◦σ

−1
(

ε

2

)
τ > 0.

This contradiction proves uniform stability of C.
Step 2: (Uniform global attractivity) Again we assume

that C is not uniformly globally attractive. This implies that
there are r, ε > 0 and sequences {xk}k∈N in X , {dk}k∈N in
D and times tk→ ∞, as k→ ∞ such that

|xk|C ≤ r and |φ(tk,xk,dk)|C ≥ ε. (19)

As we have already shown that C is uniformly stable we may
choose for the above ε a δ = δ (ε)> 0 such that

|z|C < δ , t ≥ 0, d ∈D ⇒ |φ(t,z,d)|C ≤
ε

2
. (20)

Now assume that there exist a certain k ∈ N and sk ∈ [0, tk]
so that |φ(sk,xk,dk)|C ≤ δ . Since Σ satisfies the cocycle
property (Σ5), (20) and (19) lead us to

ε ≤ |φ(tk,xk,dk)|C =
∣∣φ(tk− sk,φ(sk,xk,dk),dk(s+ ·)

)∣∣
C ≤

ε

2
,

which is a contradiction. We conclude that for all k and all
t ∈ [0, tk] we have |φ(t,xk,dk)|C ≥ δ . It then follows with
(19), (15) and (18) that for all k ≥ 1

ψ2(r)≥ ψ2(|xk|C)≥V (xk)≥
∫ tk

0
α (|φ(t,xk,dk)|C)dt ≥ α(δ )tk.

As tk→ ∞, this is a contradiction and hence C is uniformly
globally attractive. Since Σ is RFC and C is a robust invariant
set for Σ, Proposition 2.9 ensures that C is UGAS.

Remark 3.5: Contrary to the coercive case where the
existence of a Lyapunov function implies REP and RFC,
the existence of a non-coercive Lyapunov function implies
neither REP nor RFC. This follows from [10, Remark 4]2.

2We note that a few modifications are necessary in [10, Remark 4] in order
to obtain the desired example. Most importantly, the semigroups Tj(t) on
X = Lp(0,1), j ∈ N should be defined by setting for f ∈ X

(Tj(t) f )(s) :=


2

1
p f (s+ t), if s ∈ [0,1− t]∩ [4− j− t,4− j),

f (s+ t), if s ∈ [0,1− t]\[4− j− t,4− j),

0, if s ∈ (1− t,1]∩ [0,1].
(21)

Moreover, it is possible to show by means of an example
(see [19]) that even for finite-dimensional undisturbed sys-
tems the following properties are possible: (i) the system has
a unique fixed point, (ii) there exist non-coercive Lyapunov
functions which satisfy the decay condition (14) and (iii) the
system is not forward complete.

IV. APPLICATIONS

In this section we give a few examples of system classes
that are covered by our assumptions and in which the
unboundedness of generators of C0-semigroups and nonlin-
earity w.r.t. time-delays may play a role.

A. Switched linear systems in Banach spaces

This class of infinite-dimensional switched linear systems
has been studied in [10]. Here we briefly outline how to
recover some of the results of [10] with the arguments
proposed here. Let X be a Banach space. Consider a set
of closed linear operators {Aq | q ∈ Q}, Q some index set.
Assume that each Aq generates a C0-semigroup Tq on X . Let

D := {d : R+→ Q | d is piece-wise constant}, (22)

where piece-wise constant means here that any half-open
bounded interval [a,b)⊂ R+ can be partitioned into finitely
many half open intervals [ai,bi) such that d is constant on
each [ai,bi). We consider the family of differential equations

ẋ = Ad(t)x(t) (23)

which generates evolution operators in the following manner.
For d ∈D and an interval [s, t] with a partition s = b0 < b1 <
.. . < bk = t s.t. d ≡ d j ∈ Q on [b j−1,b j), j = 1, . . . ,k we set

Φd(t,s) = Tdk(t−bk−1)Tdk−1(bk−1−bk−2) . . .Td1(b1−s). (24)

With this notation we have φ(t,x,d) = Φd(t,0)x for all x ∈
X , d ∈ D , t ≥ 0. It is easy to check that the conditions of
Definition 2.1 are all satisfied. We also have the following
lemma.

Lemma 4.1: Consider the system Σ = (X ,D ,φ) given by
switched linear system (23) with D as defined in (22). The
following statements are equivalent.

(i) Σ is robustly forward complete.
(ii) x∗ = 0 is a robust equilibrium point of Σ.

(iii) There exist constants M ≥ 1, ω ∈ R such that

‖Φd(t,s)‖ ≤Meω(t−s) ∀ d ∈D , t ≥ s≥ 0. (25)
Remark 4.2: An immediate consequence of the character-

ization (iii) of the previous lemma is that for linear switched
systems the flow of Σ is Lipschitz continuous if and only if
the system is robustly forward complete.

For switched linear systems on Banach space we thus
obtain the following result, which recovers some of the
results of [10, Theorem 3].

Corollary 4.3: Consider an RFC switched linear system
Σ = (X ,D ,φ) as described by (22)-(24). Then the following
two statements are equivalent:
(a) there exists a non-coercive Lyapunov function V for Σ.
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(b) 0 is uniformly globally asymptotically stable and hence
exponentially stable.
Proof: It is clear that switched linear systems as

described by (22)-(24) are forward complete. The sufficiency
part “(a) ⇒ (b)” follows from Theorem 3.4 and Lemma 4.1.
Necessity is a consequence of standard converse Lyapunov
theorems, e.g. of [12, Section 3.4].

We note that Remark 4 in [10] also shows that even for this
system class the assumption of robust forward completeness
cannot be removed in order to conclude uniform global
asymptotic stability.

B. Time-delay systems

Consider the following class of time-delay systems

ẋ(t) = f (xt ,d), (26)

where
(i) X :=C([−r,0],Rn) and r > 0 is a given maximal delay,

(ii) xt : s 7→ x(t + s), s ∈ [−r,0] is the state of (26) at time t,
(iii) d belongs to the space L∞(R+,Rm) of globally essen-

tially bounded functions endowed with the essential
supremum norm ‖ · ‖∞,

(iv) f : X ×Rm is completely continuous3 and in addition
Lipschitz continuous in x ∈ X on bounded balls uni-
formly with respect to d.

In [23] Lipschitz continuous Lyapunov-Krasovskii func-
tions were used to characterize the stability of an equilibrium
position for (26). In [22] it was shown that for large classes
of systems and Lyapunov functions the derivative V̇ can be
obtained without the knowledge of solutions, which is one
of the drawbacks of the definition we use in (14).

In [11, p. 310] it is shown (in a somewhat more gen-
eral setting) that forward complete time-delay systems (26)
belong to the class of control systems as defined in Defini-
tion 2.1. Moreover, using the methods of this reference one
can show that if C is a closed, bounded invariant set of (26),
then C is a robust invariant set of (26). For more precise
formulation of these results we refer to [11, Example 2.6].

For this class of systems we thus obtain the following:
Corollary 4.4: Consider a time-delay system as in (26)

with bounded delay r > 0. Assume the system is robustly
forward complete on X . Let C ⊂ X be a closed bounded
invariant set for (26). If V : X → R+ is a non-coercive
Lyapunov function with respect to C, then C is UGAS.

We now specialize our results to equilibrium points, which
we take without loss of generality to be x∗ = 0. This is a spe-
cial case of an invariant set. In the classical presentation of
Lyapunov-Krasovskii functions, see e.g. [9], the conditions
which guarantee stability of an equilibrium position are

ψ1(‖x(0)‖)≤V (x)≤ ψ2(‖x‖X ) (27)
V̇ (x)<−α(‖x(0)‖), (28)

where again ψ1,ψ2 ∈K∞, α ∈K and the inequalities hold
for all x ∈ C([−r,0],Rn) = X . Note that ‖ · ‖X is the norm

3I.e., f is continuous and for any bounded subset S of X×Rm the closure
of f (S) is compact.

in X , while ‖ · ‖ is the norm in Rn. We note that already
this version presents a non-coercive Lyapunov function as
the left hand side of (27) can be arbitrarily small for x ∈ X
with ‖x‖X = 1. On the other hand the decay condition in (28)
is weaker than the condition we have imposed as it is not in
terms of the norm of x. The following result shows that in
this particular case this is sufficient.

Theorem 4.5: (Non-coercive UGAS Lyapunov theorem
for time-delay systems) Consider the time-delay system (26)
with bounded delay r > 0 and equilibrium point 0. Assume
the system is robustly forward complete on X . If V : X→R+

is continuous with V (0) = 0 and satisfies:
1) There exists a ψ2 ∈K∞ such that

0 <V (x)≤ ψ2(‖x‖X ) ∀ x ∈ X , x 6= 0; (29)

2) There exists an α ∈K such that

V̇d(x)<−α(‖x(0)‖) ∀x ∈ X , d ∈D ; (30)

then the fixed point 0 is uniformly locally asymptotically
stable for system (26). If, in addition, solutions of (26) are
uniformly bounded (Lagrange stable), i.e. if there exists a
η ∈K∞, q≥ 0 such that for all x ∈ X

sup
t≥0, d∈D

‖φ(t,x,d)‖X ≤ η(‖x‖X )+q,

then the fixed point 0 is UGAS for the system (26).
Proof: For reasons of space we just outline the

necessary modifications in the proof of Theorem 3.4. We
abbreviate φ̂(t,x,d) := φ(t,x,d)(0), which is the evaluation
of the function φ(t,x,d) ∈C([−r,0],Rn) at s = 0. Following
the steps (16)-(18) we obtain for all t ≥ 0 and all solutions∫ t

0
α(‖φ̂(s,x,d)‖)ds ≤ V (x). (31)

Step 1: (Stability) Seeking a contradiction as before there
exist an ε > 0 and sequences {xk}k∈N in X , {dk}k∈N in D ,
and tk ≥ r such that ‖xk‖X → 0 as k→ ∞ and

‖φ(tk,xk,dk)‖X = ε ∀k ≥ 1.

By the bound on V given by (15) it follows that V (xk)→ 0.
By modifying tk slightly in the interval [tk − r, tk] we may
assume that ‖φ̂(tk,xk,dk)‖= ‖φ(tk,xk,dk)‖X = ε , ∀k≥ 1. As
f is bounded on the ball B2ε in X , it follows that there is a
τ > 0 such that

‖φ̂(tk + t,xk,dk)‖ ≥
ε

2
∀t ∈ [0,τ].

We obtain for every k that

V (xk)≥
∫ tk+τ

tk
α(‖φ̂(s,xk,dk)‖)ds≥ α

(
ε

2

)
τ > 0.

This contradiction proves uniform stability of 0.
Step 2: (Uniform local attractivity) As we know that 0 is

uniformly stable, we may choose a δ > 0 such that ‖x‖X ≤ δ

implies ‖φ(t,x,d)‖X ≤ 1 for all t ≥ 0, d ∈D . Fix x∈ Bδ and
d ∈D . By the assumption on f this implies that d

dt φ̂(t,x,d)
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is bounded and thus φ̂(t,x,d) is uniformly continuous on
[0,∞). From the estimate

V (x)≥
∫

∞

0
α(φ̂(s,x,d))ds≥ 0

it thus follows that limt→∞ φ̂(t,x,d) = 0 by an application of
Barbalat’s lemma. Consequently, we have limt→∞ φ(t,x,d) =
0. The uniformity of the convergence now follows just as in
Step 2 of the proof of Theorem 3.4.

The only problem in the above argument was to obtain
boundedness of the derivative of φ̂(t,x,d). If it is known a
priori that the solutions of Σ are uniformly bounded, then
uniform global attractivity is obtained in the same way.

C. Nonlinear evolution equations in Banach spaces

Consider infinite-dimensional systems of the form

ẋ(t) = Ax(t)+g(x(t),d(t)), x(t) ∈ X , d(t) ∈ D, (32)

where A generates the C0-semigroup T (·) of bounded op-
erators, X is a Banach space and D is a nonempty subset
of a normed linear space. As the space of admissible inputs
we consider the space D of globally bounded, piecewise
continuous functions from R+ to D.

Assumption 1: We suppose that the nonlinearity g : X ×
D→ X is Lipschitz continuous on bounded subsets of X ,
uniformly with respect to the second argument, i.e. for all
C > 0 there exists L f (C) > 0, such that for all x,y with
‖x‖X ≤C, ‖y‖X ≤C and z ∈ D it holds that

‖g(y,z)−g(x,z)‖X ≤ L f (C)‖y− x‖X . (33)

Assume also that g(x, ·) is continuous for all x ∈ X .
We consider mild solutions of (32), i.e. solutions of the

integral equation

x(t) = T (t)x(0)+
∫ t

0
T (t− s)g(x(s),d(s))ds (34)

belonging to the class C([0,τ],X) for certain τ > 0.
It is well known that the system (32) is well-posed if

Assumption 1 is satisfied. Moreover it satisfies all the axioms
of the Definition 2.1, possibly with exception of forward
completeness. Thus, (32) gives rise to a control system
Σ = (X ,D ,φ). We show next that for system (32) some of
the assumptions of Theorem 3.4 are automatically satisfied.

Lemma 4.6: Assume that (32) is robustly forward com-
plete and Assumption 1 holds. Then (32) has a flow which
is Lipschitz continuous on compact intervals.

We obtain from Theorem 3.4, and Lemmas 4.6 and 2.6:
Corollary 4.7: Let Assumption 1 be satisfied. Let (32) be

robustly forward complete and let 0 be an equilibrium of
(32). If there exists a non-coercive Lyapunov function for
(32), then (32) is UGAS.

Proof: Lemma 4.6 and RFC property of (32) imply that
the flow of (32) is Lipschitz continuous on compact intervals.
Next Lemma 2.6 implies that 0 is a robust equilibrium point
of (32). Finally, Theorem 3.4 shows that (32) is UGAS.

V. CONCLUSIONS

We have shown that the existence of a non-coercive
Lyapunov function is equivalent to uniform global asymptotic
stability of an invariant set for nonlinear infinite-dimensional
systems with disturbances, provided the system is robustly
forward complete and the invariant set is robust. In the linear
case these two properties are always satisfied, but they are
essential in the general case. Also it is essential, that the
decay rate along trajectories is given in terms of the state:
V̇ (x)≤−γ(‖x‖X ) as shown by an example in [19].
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