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Abstract— We state a characterization of input-to-state sta-
bility (ISS) for a broad class of control systems, including
time-delay systems, partial differential equations, ordinary
differential equations, switched systems etc. Next we specify
this result for a general class of nonlinear time-delay systems.
We show that in this case some additional refinements are
possible. Finally, we throw some light on several important open
problems in ISS theory of time-delay systems: whether time-
invariant forward complete systems necessarily have bounded
reachability sets and whether limit property and uniform limit
properties are equivalent for nonlinear time-delay systems.

Keywords: nonlinear control systems, input-to-state sta-
bility, time-delay systems, infinite-dimensional systems.

I. INTRODUCTION

The concept of input-to-state stability (ISS), introduced
in [21], has become indispensable for various branches of
nonlinear control theory, such as robust stabilization of
nonlinear systems [6], design of nonlinear observers [1],
analysis of large-scale networks [10], [5] etc.

For input-to-state stability of time-delay systems two dif-
ferent Lyapunov-type sufficient conditions have been pro-
posed: via ISS Lyapunov-Razumikhin functions [24] and by
ISS Lyapunov-Krasovskii functionals [19]. These results to-
gether with small-gain theorems [12], [14], [4] make possible
the study of ISS of large-scale interconnections of control
systems as e.g. chemostat model with time-delays [14], [25].

Characterization of ISS in terms of other stability prop-
erties are among the fundamental results in ISS theory. In
the case of ordinary differential equations (ODEs) in [22]
Sontag and Wang have shown that ISS is equivalent to the
existence of a smooth ISS Lyapunov function and in [23] the
same authors proved an ISS superposition theorem, saying
that ISS is equivalent to the limit property combined with
local stability. Related ISS superposition theorems have been
proved for hybrid systems in [2]. Characterizations of ISS
greatly simplify the proofs of other fundamental results, such
as small-gain theorems for ODEs [5] and hybrid systems
[2], [3], Lyapunov-Razumikhin [24], [4] and Lyapunov-
Krasovskii [9], [8] theory for time-delay systems, to name a
few examples.

Whereas there are several criteria for ISS of time-delay
systems in terms of Lyapunov functions [11], [20], there
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are virtually no results on non-Lyapunov characterizations
for time-delay systems. On the way of obtaining these
results there appear several difficulties: noncompactness of
closed bounded balls in infinite-dimensional normed linear
spaces, possible unboundedness of reachability sets even
for nonuniformly globally asymptotically stable nonlinear
systems, etc [18]. Because of these facts the generalization
of the characterizations of ISS for ODEs from [23] is far
from being straightforward.

Recent results in [18], [17], [16] overcome these problems
and develop a characterization of ISS for a broad class
of infinite-dimensional control systems, encompassing many
evolution PDEs, time-delay systems, differential equations in
Banach spaces, switched systems etc. This class is closely
related to abstract definitions of control systems as presented
e.g. in [13]. In Section III of this note we concentrate
ourselves on time-delay systems and discuss the question
whether in this particular case even stronger criteria for ISS
can be achieved. We prove some properties that are of interest
in this respect. The complete picture is as yet unclear.

For general infinite-dimensional systems [18] develops a
hierarchy of concepts. The strongest notion is that of ISS,
which is equivalent to the uniform asymptotic gain property,
and equivalent to the uniform limit property in combination
with suitable local stability properties. Weaker notions are
that of strong ISS (so named because of its relation to
strong stability of C0-semigroups) and its characterizations.
Because of the lack of local compactness of the state space
other familiar characterizations of ISS no longer hold in
infinite dimensions. For instance, the familiar equivalence of
ISS with the asymptotic gain property together with global
asymptotic stability of the origin for the system with zero
input is a strictly finite-dimensional result.

For a characterization of ISS an important role is played by
the boundedness of reachability sets (for uniformly bounded
inputs). According to the knowledge of the authors, it is
an open problem, whether (time invariant) forward complete
time-delay systems possess bounded reachability sets (for the
ODE case such a claim is true [15] and for general infinite-
dimensional systems it is false [18]). Some insights to this
problem are presented in Section III-B.

In the characterization of ISS the uniform limit property
is of importance. To the best of the knowledge of the authors
it is first introduced in [18]. It is of interest to note that in
the ODE case it is equivalent to the limit property which has
already been used in [23]. We show that this is the case in
Section IV.
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A. Notation

The following notation will be used throughout these
notes. By R+ we denote the set of nonnegative real numbers.
For an arbitrary set S and n∈N the n-fold Cartesian product
is Sn := S× . . .×S.

Let (X ,‖·‖) be a normed linear space. For each nonempty
A ⊂ X and x ∈ X we define the distance from x to A by
‖x‖A := infy∈A ‖x− y‖. Define also ‖A ‖ := supx∈A ‖x‖.
The open ball in a normed linear space X with ra-
dius r around A ⊂ X is denoted by Br(A ) := {x ∈ X :
‖x‖A < r}. For short, we denote Br := Br({0}). Similarly,
Br,U := {u ∈U : ‖u‖U < r}. The closure of a set S ⊂ X
w.r.t. the norm ‖ · ‖ is denoted by S.

For the formulation of stability properties the following
classes of comparison functions are useful:

K := {γ : R+→ R+ | γ is continuous, strictly
increasing and γ(0) = 0} ,

K∞ := {γ ∈K | γ is unbounded} ,
L := {γ : R+→ R+ | γ is continuous and strictly

decreasing with lim
t→∞

γ(t) = 0},
K L := {β : R+×R+→ R+ | β is continuous,

β (·, t) ∈K , β (r, ·) ∈L , ∀t ≥ 0, ∀r > 0} .
II. ABSTRACT SETTING

In this paper we consider abstract, axiomatically defined,
time-invariant, and forward complete systems.

Definition 2.1: Consider the triple Σ = (X ,U ,φ) consist-
ing of

(i) A normed linear space (X ,‖ ·‖), called the state space,
endowed with the norm ‖ · ‖.

(ii) A set of input values U , which is a nonempty subset
of a normed linear space Su.

(iii) A space of inputs U ⊂ { f : R+→U} endowed with a
norm ‖ · ‖U which satisfies the following two axioms:
The axiom of shift invariance states that for all u ∈
U and all τ ≥ 0 the time shift u(·+ τ) ∈ U with
‖u‖U ≥ ‖u(·+ τ)‖U .
The axiom of concatenation is defined by the require-
ment that for all u1,u2 ∈ U and for all t > 0 the
concatenation of u1 and u2 at time t

u(τ) :=

{
u1(τ), if τ ∈ [0, t],
u2(τ− t), otherwise,

(1)

belongs to U .
(iv) A transition map φ : R+×X×U → X .

The triple Σ is called a (forward complete) dynamical system,
if the following properties hold:
(Σ1) Forward completeness: for every (x,u)∈X×U and for

all t ≥ 0 the value φ(t,x,u) ∈ X is well-defined.
(Σ2) The identity property: for every (x,u) ∈ X×U it holds

that φ(0,x,u) = x.
(Σ3) Causality: for every (t,x,u) ∈ R+×X ×U , for every

ũ ∈ U , such that u(s) = ũ(s), s ∈ [0, t] it holds that
φ(t,x,u) = φ(t,x, ũ).

(Σ4) Continuity: for each (x,u) ∈ X ×U the map t 7→
φ(t,x,u) is continuous.

(Σ5) The cocycle property: for all t,h ≥ 0, for all x ∈ X ,
u ∈U we have φ(h,φ(t,x,u),u(t + ·)) = φ(t +h,x,u).

This class of systems encompasses control systems gen-
erated by ordinary differential equations (ODEs), switched
systems, time-delay systems, evolution partial differential
equations (PDEs), abstract differential equations in Banach
spaces and many others.

For a set S ⊂U define the set of inputs with values in
S as US := {u ∈U : u(t) ∈S , t ∈ R+}.

For each subset S ⊂ U , each T ≥ 0, and each subset
C⊆ X we define the sets of the states which can be reached
from C by inputs from US at time not exceeding T :

RT
S (C) := {φ(t,x,u) : 0≤ t ≤ T, u ∈US , x ∈C}

and

RS (C) :=
⋃

T≥0

RT
S (C) = {φ(t,x,u) : t ≥ 0, u ∈US , x ∈C}.

For short we denote RT (C) :=RT
U (C) and R(C) :=RU (C).

We start with some basic definitions. Without loss of
generality we restrict our analysis to fixed points of the form
(0,0) ∈ X×U , so that we tacitly assume that the zero input
is an element of U .

Definition 2.2: Consider a system Σ = (X ,U ,φ) with
equilibrium point 0 ∈ X . We say that φ is continuous at the
equilibrium if for every ε > 0 and for any h > 0 there exists
a δ = δ (ε,h)> 0, so that

t ∈ [0,h], ‖x‖ ≤ δ , ‖u‖U ≤ δ ⇒ ‖φ(t,x,u)‖ ≤ ε. (2)

In this case we will also say that Σ has the CEP property.
Even nonuniformly globally asymptotically stable systems

do not always have uniform bounds for their reachability sets
on finite intervals (see [18]). Systems exhibiting such bounds
deserve a special name.

Definition 2.3: We say that Σ = (X ,U ,φ) has bounded
reachability sets (BRS), if for any C > 0 and any τ > 0 it
holds that

sup
{
‖φ(t,x,u)‖ : ‖x‖ ≤C, ‖u‖U ≤C, t ∈ [0,τ]

}
< ∞.

Let us define the stability notions for control systems
Definition 2.4: System Σ = (X ,U ,φ) is called
• uniformly locally stable (ULS), if there exist σ ,γ ∈K∞

and r > 0 such that for all x ∈ Br and all u ∈ Br,U :

‖φ(t,x,u)‖ ≤ σ(‖x‖)+ γ(‖u‖U ) ∀t ≥ 0. (3)

• uniformly globally stable (UGS), if there exist σ ,γ ∈K∞

such that for all x ∈ X ,u ∈U the estimate (3) holds.
Next we define the attractivity properties for systems with

inputs.
Definition 2.5: System Σ = (X ,U ,φ) has the
• asymptotic gain (AG) property, if there is a γ ∈K∞∪{0}

such that for all ε > 0, for all x ∈ X and for all u ∈U
there exists a τ = τ(ε,x,u)< ∞ such that

t ≥ τ ⇒ ‖φ(t,x,u)‖ ≤ ε + γ(‖u‖U ). (4)
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• strong asymptotic gain (sAG) property, if there is a γ ∈
K∞∪{0} such that for all x ∈ X and for all ε > 0 there
exists a τ = τ(ε,x)< ∞ such that for all u ∈U

t ≥ τ ⇒ ‖φ(t,x,u)‖ ≤ ε + γ(‖u‖U ). (5)

• uniform asymptotic gain (UAG) property, if there exists
a γ ∈K∞∪{0} such that for all ε,r > 0 there is a τ =
τ(ε,r)< ∞ such that for all u ∈U and all x ∈ Br

t ≥ τ ⇒ ‖φ(t,x,u)‖ ≤ ε + γ(‖u‖U ). (6)
All three properties AG, sAG and UAG imply that all

trajectories converge to the ball of radius γ(‖u‖U ) around the
origin as t→∞. The difference between AG, sAG and UAG
is in the kind of dependence of τ on the states and inputs.
In UAG systems this time depends (besides ε) only on the
norm of the state, in sAG systems it depends on the state x
(and may vary for different states with the same norm), but
it does not depend on u. In AG systems τ depends both on
x and on u.

Next we define properties, similar to AG, sAG and UAG,
which formalize reachability of the ε-neighborhood of the
ball Bγ(‖u‖U ) by trajectories of Σ.

Definition 2.6: We say that Σ = (X ,U ,φ) has the

(i) limit property (LIM) if there exists γ ∈K such that for
all x ∈ X , u ∈U and ε > 0 there is a t = t(x,u,ε):

‖φ(t,x,u)‖ ≤ ε + γ(‖u‖U ).

(ii) strong limit property (sLIM), if there exists γ ∈K so
that for every ε > 0 and for every x ∈ X there exists
τ = τ(ε,x) such that for all u ∈U there is a t ≤ τ:

‖φ(t,x,u)‖ ≤ ε + γ(‖u‖U ). (7)

(iii) uniform limit property (ULIM), if there exists γ ∈K
so that for every ε > 0 and for every r > 0 there exists
a τ = τ(ε,r) such that for all x with ‖x‖ ≤ r and all
u ∈U there is a t ≤ τ such that

‖φ(t,x,u)‖ ≤ ε + γ(‖u‖U ). (8)
Now we proceed to the main concept of this paper:
Definition 2.7: System Σ=(X ,U ,φ) is called (uniformly)

input-to-state stable (ISS), if there exist β ∈K L and γ ∈K
such that for all x ∈ X , u ∈U and t ≥ 0 it holds that

‖φ(t,x,u)‖ ≤ β (‖x‖, t)+ γ(‖u‖U ). (9)
The following theorem provides the desired characteriza-

tions of ISS:
Theorem 2.8: Let Σ = (X ,U ,φ) be a forward complete

system satisfying the BRS and the CEP property. Then the
relations depicted in Figure 1 hold.

The proof is omitted due to space limitations, and can be
found in [18]. Instead we are going to focus in this note
on time-delay systems and show how the characterizations,
achieved in Theorem 2.8 can be refined for this important
special class of control systems.

III. CHARACTERIZATIONS OF ISS FOR TIME-DELAY
SYSTEMS

We consider the retarded differential equations of the form

ẋ(t) = f (xt ,u), (10)

where xt ∈ X := C([−Td ,0],Rn), n ∈ N, Td > 0 is the fixed
(maximal) time-delay and xt(s) = x(t + s), s ∈ [−Td ,0].

We assume here that U := Rm and u belongs to the
space U := L∞(R+,U) of globally essentially bounded,
measurable functions u : R+ → U . The norm of u ∈ U is
given by ‖u‖U := ess.supt≥0 ‖u(t)‖U .

For system (10), we use the following assumption con-
cerning the nonlinearity f .

Assumption 1: We assume that:

(i) f : X×U→Rn is Lipschitz continuous in x on bounded
subsets of X and U , uniformly with respect to the
second argument, i.e. for all C > 0, there exists a
L f (C) > 0, such that for all x,y ∈ BC and for all
v ∈U,‖v‖U ≤C, it holds that

| f (x,v)− f (y,v)| ≤ L f (C)‖x− y‖. (11)

(ii) f (x, ·) is continuous for all x ∈ X .
The validity of Assumption 1 together with forward com-

pleteness of (10) ensures that (10) is a control system as
defined in Definition 2.1. This means that Theorem 2.8
can be applied to the systems (10) and it gives criteria
for ISS of (10). However, since (10) is a special class of
control systems, it would be desirable to obtain more precise
characterizations of ISS for (10). On the subsequent pages
we are going to treat this question is some detail.

A. Continuity at the equilibrium for time-delay systems

In this section we show that for system (10) satisfying
Assumption 1, boundedness of reachability sets implies the
CEP property. To this end we investigate Lipschitz continuity
properties of the flow of the time-delay system.

Definition 3.1: The flow of (10) is called Lipschitz con-
tinuous on compact intervals (for uniformly bounded inputs),
if for any τ > 0 and any R > 0 there exists L > 0 s.t. for any
x,y ∈ BR, for all u ∈ BR,U and all t ∈ [0,τ] and it holds that

‖φ(t,x,u)−φ(t,y,u)‖ ≤ L‖x− y‖. (12)
We have the following:
Lemma 3.2: Let Assumption 1 hold and assume that (10)

is BRS. Then (10) has a flow which is Lipschitz continuous
on compact intervals for uniformly bounded inputs.

Proof: Pick any R > 0, any x,y∈ BR and any u∈ BR,U .
Let xt := φ(t,x,u), yt := φ(t,y,u) be the solutions of (10)
defined on the whole nonnegative time axis and x(t) = xt(0),
y(t) = yt(0).

Pick any τ > 0 and set

K(R,τ) := sup
‖x‖≤R, ‖u‖U ≤R, t∈[0,τ]

‖φ(t,x,u)‖,

which is finite since (10) is BRS.
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Fig. 1. Relations between stability properties of infinite-dimensional systems, which are continuous at the equilibrium and have bounded reachability
sets. Some of the notions depicted here are not defined in this paper; the definitions can be found in [18]

We have for any t ∈ [0,τ]:

|x(t)− y(t)| ≤ |x(0)− y(0)|+
∫ t

0
| f (xs,u(s))− f (ys,u(s))|ds

≤ ‖x− y‖+L(K(R, t))
∫ t

0
‖xs− ys‖ds

≤ ‖x− y‖+L(K(R,τ))
∫ t

0
‖xs− ys‖ds.

Taking suprema over [t−Td , t] of both sides, we obtain:

‖xt − yt‖ ≤ ‖x− y‖+L(K(R,τ))
∫ t

0
‖xs− ys‖ds.

According to Grönwall’s inequality we obtain for t ∈ [0,τ]:

‖xt − yt‖ ≤ ‖x− y‖eL(K(R,τ))t ≤ ‖x− y‖eL(K(R,τ))τ ,

which proves the lemma.
Now we show that (10) has the CEP property.
Lemma 3.3: Let 0 be an equilibrium of (10) and let

Assumption 1 hold. Assume also that (10) is BRS. Then
(10) has the CEP property.

Proof: Pick any ε > 0, τ ≥ 0, δ > 0 and choose any
x ∈ X with ‖x‖ ≤ δ as well as any u ∈ Bδ ,U . It holds that

‖φ(t,x,u)‖ ≤ ‖φ(t,x,u)−φ(t,0,u)‖+‖φ(t,0,u)‖.

By Lemma 3.2, the flow of (10) is Lipschitz continuous on
compact time intervals. Hence there exists a L(τ,δ ) so that
for t ∈ [0,τ]

‖φ(t,x,u)−φ(t,0,u)‖ ≤ L(τ,δ )‖x‖ ≤ L(τ,δ )δ .

Let us estimate ‖φ(t,0,u)‖. We have:

‖φ(t,0,u)‖= sup
s∈[−Td ,0]

|φ(t + s,0,u)|

≤
∫ t

0

∣∣ f (φ(s,0,u),u(s))∣∣ds

≤
∫ t

0

(∣∣ f (φ(s,0,u),u(s))− f (0,u(s))
∣∣+ | f (0,u(s))|)ds.

Since f (0, ·) is continuous, for any ε2 > 0 there exists δ2 <
δ so that u(s) ∈ Bδ2 implies that | f (0,u(s))− f (0,0)| ≤ ε2.

Since 0 is an equilibrium of (10), f (0,0) = 0 and for the
above u we have | f (0,u(s))| ≤ ε2.

Due to the BRS property, there exists K(τ,δ2) with
‖φ(s,0,u)‖ ≤K(τ,δ2) for any u∈ Bδ2,U and s∈ [0,τ]. Now,
Lipschitz continuity of f shows that

‖φ(t,0,u)‖ ≤
∫ t

0
L(K(τ,δ ))‖φ(s,0,u)‖+ ε2ds

≤ L(K(τ,δ ))
∫ t

0
‖φ(s,0,u)‖ds+ τε2.

Now Grönwall’s Lemma implies that

‖φ(t,0,u)‖ ≤ τε2eL(K(τ,δ2))τ ≤ τε2eL(K(τ,δ2))τ .

To finish the proof choose ε2 and δ2 small enough to
ensure that τε2eL(K(τ,δ2))τ ≤ ε .

The developments of this section together with Theo-
rem 2.8 lead to the following result:

Theorem 3.4: Consider a forward complete system (10)
satisfying Assumption 1. Let also 0 be an equilibrium point
(i.e. f (0,0) = 0) and (10) possess bounded reachability sets.
Then the relations depicted in Figure 1 hold.

Proof: Apply Theorem 2.8 and Lemmas 3.3, 3.2.
We hasten to add that additional investigations are needed

in order to understand whether Theorem 3.4 can be further
strengthened. In particular, it is of interest to know whether
forward completeness of (10) implies boundedness of reach-
ability sets for the same system; and whether the LIM and
ULIM properties coincide for (10). In the next sections we
throw some light onto these problems.

B. On Boundedness of reachability sets of time-delay sys-
tems

Before we proceed to time-delay systems, let us take a
quick look onto the properties of reachability sets of ODE
systems.

1) Reachability sets of ODE systems: Let X = Rn, U =
Rm and U := L∞(R+,U) (the space of globally essentially
bounded functions endowed with the essential supremum
norm). For f : X×U → X consider the system

ẋ = f (x,u). (13)
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Assuming that f is continuous and locally Lipschitz contin-
uous in x uniformly in u and that (13) is forward complete,
classical Carathéodory theory implies (Σ2)-(Σ5). We will
sometimes briefly speak of ODE systems, when referring
to (13).

The following result due to [15, Proposition 5.1] shows
boundedness of reachability sets of forward complete sys-
tems.

Proposition 3.5: Let (13) be forward-complete. For each
bounded S ⊂ Rm, each T ≥ 0, and each bounded subset
C ⊆ Rn the reachability set RT

S (C) is bounded.
One of the technical results on the way to Proposition 3.5

is [15, Lemma 5.2], formulated next:
Lemma 3.6: Let K be a closed bounded subset of Rn and

S ⊂ Rm be closed and bounded and let T > 0 be any real
number. Then RT

S (K) is bounded if and only if RT
S (x) is

bounded for any x ∈ K.
In the terminology of [7, p. 59] Lemma 3.6 states that the

solution map φ is bounded (for uniformly bounded inputs).
The next example shows that the relation between forward

completeness and the BRS property changes dramatically for
infinite-dimensional systems.

2) Example: Reachability sets of general infinite-
dimensional systems: In [18] the following example was
presented to show that there are systems which are forward
complete, globally (nonuniformly) asymptotically stable and
uniformly locally asymptotically stable, but which do not
have bounded reachability sets.

Σ
1 :

 Σ1
k :
{

ẋk =−xk + x2
kyk− 1

k2 x3
k ,

ẏk =−yk.
k = 1,2, . . . ,

(14)

with the state space X given by

l2 =

{
(zk)

∞
k=1 :

∞

∑
k=1
|zk|2 < ∞, zk = (xk,yk) ∈ R2

}
. (15)

3) Reachability sets of time-delay systems: Let us con-
sider again time-delay systems (10). In [7, Property 1.3, p.
59] Hale shows that a counterpart of Lemma 3.6 does not
hold for time-delay systems with locally Lipschitz nonlin-
earities. This makes it impossible to mimic the proof of
Proposition 3.5 for time-delay systems. At the same time
the following result holds, showing local boundedness (in
the terminology of [7, p. 59]) of the solution map φ for
uniformly bounded inputs.

Lemma 3.7: Let S ⊂U be bounded and let T > 0 be any
real number. If RT

S (x) is bounded for some x∈ X , then there
is a neighborhood N of x so that RT

S (N) is bounded.
Proof: Let S ⊂U be bounded and let T > 0 be any

real number. Denote the distance between z ∈ X and Z ⊂ X
by ρ(z,Z) := inf{‖y− z‖ : y ∈ Z}.

Pick any x ∈ X and assume that RT
S (x) is bounded. Then

also the set M := {y ∈ X : ρ
(
y,RT

S (x)
)
≤ 1} is bounded.

Denote C := max
{

sup{‖y‖ : y ∈M}, sup{‖u‖U : u ∈S }
}

.
Since f is Lipschitz continuous on bounded balls, there

is L > 0: for all y1,y2 ∈ X : ‖y1‖ ≤C, ‖y2‖ ≤C and for all

u ∈U : ‖u‖U ≤C it holds that

‖ f (y1,u)− f (y2,u)‖ ≤ L‖y1− y2‖.

Set r := e−LT and pick any y ∈ Br(x) and any u ∈US . Let
tm = tm(y,u) := inf{t ≥ 0 : φ(t,y,u) /∈M}. Assume that tm <
T . Then for every t ∈ [0, tm] it holds that

|φ(t,x,u)(0)−φ(t,y,u)(0)|

≤|x(0)− y(0)|+
∫ t

0

∣∣ f (φ(s,x,u),u)− f (φ(s,y,u),u)
∣∣ds.

Hence

‖φ(t,x,u)−φ(t,y,u)‖= sup
s∈[−Td ,0]

|φ(t,x,u)(s)−φ(t,y,u)(s)|

= sup
s∈[−Td ,0]

|φ(t + s,x,u)(0)−φ(t + s,y,u)(0)|

≤max
{
‖x− y‖,

|x(0)− y(0)|+
∫ t

0

∣∣ f (φ(s,x,u),u)− f (φ(s,y,u),u)
∣∣ds
}

≤‖x− y‖+
∫ t

0

∣∣ f (φ(s,x,u),u)− f (φ(s,y,u),u)
∣∣ds

≤‖x− y‖+L
∫ t

0

∥∥φ(s,x,u)−φ(s,y,u)
∥∥ds.

By Grönwall’s inequality we proceed to

‖φ(t,x,u)−φ(t,y,u)‖ ≤ ‖x− y‖eLt ≤ reLtm = eL(tm−T ) < 1.

Thus, φ(t,y,u) is in the interior of M for any t ∈ [0, tm],
which contradicts to the definition of tm. Hence tm ≥ T and
herewith φ(t,y,u) stays within M for all t ∈ [0,T ].

It is an interesting and important problem, whether in
spite of the failure of Lemma 3.6 for time-delay systems,
the counterpart of Proposition 3.5 still holds for the systems
(10) satisfying Assumption 1.

IV. THE UNIFORM LIMIT PROPERTY

The following Proposition 4.1 shows that all versions of
the limit property coincide in the finite dimensional case.

Proposition 4.1: Assume the finite-dimensional system
(13) is forward-complete. Then (13) is LIM if and only if it
is ULIM.

Proof: It is clear that ULIM implies LIM. For the
converse statement we will make use of [23, Corollary III.3].
The result may be applied as follows. Assume (13) is LIM
and let γ ∈K∞ be the corresponding gain. Fix ε > 0, r > 0
and R > 0. By the LIM property, for all x0 ∈ Rn and all
u ∈ U with ‖u‖∞ ≤ R there is a time t ≥ 0 such that
|φ(t,x,u)| ≤ ε

2 + γ(R). Then [23, Corollary III.3] states that
there is a τ = τ(ε,r,R) such that for all x ∈ Br, u ∈ BR,U
there exists a t ≤ τ(ε,r,R) such that

|φ(t,x,u)| ≤ ε + γ(R). (16)

With this argument at hand, we now proceed to show ULIM.
Fix ε > 0 and r > 0. We are going to find a τ = τ(ε,r) for
which the ULIM condition is satisfied. To this end define
R1 := γ−1(max{r−ε,0}). Then for each u ∈U : ‖u‖∞ ≥ R1
and each x ∈ Br it holds that

|φ(0,x,u)|= |x| ≤ r ≤ ε + γ(R1)≤ ε + γ(‖u‖∞),
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and the time t(ε,r,u) in the definition of ULIM can be chosen
for such u as t := 0.

Now set τ1 := τ( ε

2 ,r,R1). Then by the argument leading
to (16) we have for all x ∈ Br and u ∈U : ‖u‖∞ ≤ R1 a time
t ≤ τ1 such that

|φ(t,x,u)| ≤ ε + γ(R1)−
ε

2
. (17)

Define

R2 := γ
−1
(

max
{

γ(R1)−
ε

2
,0
})

= γ
−1
(

max
{

r− 3ε

2
,0
})

.

From (17) we obtain for all u with R2 ≤ ‖u‖∞ ≤ R1 that for
the above t

|φ(t,x,u)| ≤ ε + γ(‖u‖∞).

For k ∈ N define the times τk := τ( ε

2 ,r,Rk) and

Rk := γ
−1
(

max
{

γ(Rk−1)−
ε

2
,0
})

= γ
−1
(

max
{

r− (k+1)ε
2

,0
})

.

Repeating the previous argument we see that for all x ∈ Br
and all u ∈U with Rk+1 ≤ ‖u‖∞ ≤ Rk there is a time t ≤ τk
such that |φ(t,x,u)| ≤ ε +γ(‖u‖∞). The procedure ends after
finitely many steps because eventually r− (k+1)ε

2 becomes
negative. The claim now follows for τ := max

{
τk | k =

1, . . . ,b 2r
ε
c+1

}
, where b·c denotes the integer part of a real

number.
The key argument in the previous proof is (16) which

gives a uniform time in which trajectories corresponding
to initial conditions bounded by r and inputs bounded by
R are below a certain bound. The rest of the proof is a
straightforward manipulation of inequalities. We conjecture
that similar arguments are possible for time-delay systems.

V. CONCLUSION

In this note we collected recent results dealing with
characterizations of the input-to-state stability for time-delay
systems. First we present a broad picture of relations be-
tween ISS and other stability notions for general infinite-
dimensional systems (much more general than time-delay
systems). Next we show that time-delay systems with Lip-
schitz continuous nonlinearities and a trivial equilibrium
are continuous at the equilibrium provided the system has
bounded reachability sets. This makes the characterizations
of ISS more precise and easier to apply in practice.

Here another interesting question appears naturally:
whether boundedness of reachability sets can be inferred
from forward completeness. Though we have not solved this
problem, we collected several insights throwing some light
on essence of this question. Another important problem is
whether limit property is equivalent to uniform limit property
for nonlinear forward complete time-delay systems. Again,
this problem is outside of the scope of this paper, but we
show that this result holds for finite-dimensional systems.
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[1] M. Arcak and P. Kokotović. Nonlinear observers: a circle criterion
design and robustness analysis. Automatica, 37(12):1923–1930, 2001.

[2] C. Cai and A. Teel. Characterizations of input-to-state stability for
hybrid systems. Systems & Control Letters, 58(1):47–53, 2009.

[3] S. Dashkovskiy and M. Kosmykov. Input-to-state stability of inter-
connected hybrid systems. Automatica, 49(4):1068–1074, 2013.

[4] S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok.
Stability of interconnected impulsive systems with and without time
delays, using Lyapunov methods. Nonlinear Analysis: Hybrid Systems,
6(3):899–915, 2012.
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