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a b s t r a c t

We show that a nonlinear locally uniformly asymptotically stable infinite-dimensional system is
automatically locally input-to-state stable (LISS) provided the nonlinearity possesses some sort of uniform
continuity with respect to external inputs. Also we prove that LISS is equivalent to existence of a LISS
Lyapunov function. We show by means of a counterexample that if this uniformity is not present, then
the equivalence of local asymptotic stability and local ISS does not hold anymore. Using a modification
of this counterexample we show that in infinite dimensions a uniformly globally asymptotically stable at
zero, globally stable and locally ISS system possessing an asymptotic gain property does not have to be
ISS (in contrast to finite dimensional case).

© 2015 Published by Elsevier B.V.
1. Introduction

Input-to-state stability (ISS) theory of ordinary differential
equations (ODEs) is nowadays a developed theory with a firm
theoretical basis, with a variety of powerful tools for investigation
of ISS and with a multitude of applications in the nonlinear
control theory, in particular to robust stabilization of nonlinear
systems [1], design of nonlinear observers, analysis of large-scale
networks [2–4], etc.

Among the most important results in ISS theory for ODE sys-
tems are the characterizations of ISS in terms of Lyapunov func-
tions and other stability properties [5,6]. These theorems have
shown that ISS is a central notion in stability theory of control sys-
tems and at the same time these results played an important role
in the proofs of other important results, e.g. small-gain theorems
in a trajectory formulation [3]. In contrast to global ISS property,
according to author’s knowledge, there are no characterizations
of local ISS property available in the literature. This is quite sur-
prising, since such characterizations are useful from theoretical as
well from the practical point of view, and at the same time closely
related results for other kinds of robustness are well-known (see
e.g. [7, Corollary 4.2.3]). The most known result in ISS context is
[6, Lemma 1] telling that global asymptotic stability for a zero in-
put (0-GAS) implies LISS for ODE systems.

One of our aims in this paper is to obtain the characterization of
the local ISS property.Wedo not restrict ourselves to consideration
of ODE systems, since the questions of robust stabilization, control
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and observation of infinite-dimensional systems are of central
importance in control theory and we believe that ISS is a right tool
to handle these questions. Thus, we study (L)ISS of general infinite-
dimensional systems of the form

ẋ(t) = Ax(t)+ f (x(t), u(t)), x(t) ∈ X, u(t) ∈ U, (1)

where X is a Banach space, U is a linear normed space, A is the
generator of a C0-semigroup {T (t), t ≥ 0} and f : X × U →

X . Many classes of evolution equations, such as parabolic and
hyperbolic partial differential equations, can bewritten in the form
(1): [7–9].

In the last years ISS of infinite-dimensional systems (1) as
well as of partial differential equations has been studied in a
number of papers, see [10–17] to cite a few. But in most of these
works the attention has been devoted to construction of Lyapunov
functions for ISS systems and to design of robust stabilizing
controllers for unstable systems. At the same time the problem of
characterizations of local and global ISS for systems (1) is still open.

In this paper wemake a step towards its solution. There are two
contributions in this paper: a ‘positive’ and a ‘negative’ one. Our
positive result is that under some sort of uniform continuity of f
with respect to external inputs, local uniform asymptotic stability
of (1) is equivalent to local ISS of (1) and to existence of a Lipschitz
LISS Lyapunov function for it. Thus, our findings imply the result
[6, Lemma1] as a very special case. In the proof of this resultwe use
a technique, used to prove a closely related robustness result for
infinite-dimensional systems, see [7, Corollary 4.2.3]. We show by
means of a counterexample, that if the nonlinearity f is continuous
at the neighborhood of zero, but without additional uniformity,
then the main result does not hold.
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Note also that for time-delay systems a related result is avail-
able, namely that local exponential stability of the undisturbed sys-
tems plus some additional properties of the nonlinearity imply ISS
of the disturbed system [18]. However, there are important differ-
ences between our paper and [18], in particular, we do not require
local exponential stability of (1) and instead we consider merely
locally uniformly asymptotically stable systems.

The ‘negative’ contribution of this paper is an example of a sys-
tem (obtained by a modification of the previous counterexample),
which is locally ISS, uniformly globally asymptotically stable at
zero (0-UGAS), globally stable (GS) and possessing an asymptotic
gain property (AG), but which is not ISS. This shows that restate-
ments of global ISS property proved in [5,6] for ODE systems (such
as ISS = AG + GS = AG + 0-UGAS = AG + LISS), do not hold for
systems (1) in general.

We believe that the results obtained in this paper will be useful
in applications as well as for the characterization of the global ISS
property for abstract systems (1).

2. Preliminaries

Let R+ := [0,∞) and Br := {x ∈ X : ∥x∥X ≤ r}. In all the
pages below we assume that the set of input values U is a normed
linear space with the norm ∥ · ∥U and that the input functions
u : R+ → U belong to the space U := PC(R+,U) of bounded
piecewise continuous functions, which are right continuous. The
norm of u ∈ U we denote as ∥u∥U := supt≥0 ∥u(s)∥U .

We are going to study weak solutions of (1), i.e. the solutions of
the integral equation

x(t) = T (t)x(0)+

 t

0
T (t − s)f (x(s), u(s))ds ∀t ∈ [0, τ ], (2)

belonging to C([0, τ ], X) for some τ > 0.
We assume that f (0, 0) = 0, i.e., x ≡ 0 is an equilibrium point

of (1).

Assumption 1. We suppose throughout the paper that the nonlin-
earity f satisfies the following properties:

(i) f : X × U → X is Lipschitz continuous on bounded subsets
of X , uniformly with respect to the second argument, i.e. ∀C >
0 ∃Lf (C) > 0, such that ∀x, y : ∥x∥X ≤ C, ∥y∥X ≤ C , ∀v ∈ U ,
it holds that

∥f (y, v)− f (x, v)∥X ≤ Lf (C)∥y − x∥X . (3)

(ii) f (x, ·) is continuous for all x ∈ X .

Since U = PC(R+,U), Assumption 1 ensures that the weak
solution of (1) exists and is unique, according to a variation of the
classical existence and uniqueness theorem [8, Proposition 4.3.3].
We denote by φ(t, x, u) this solution atmoment t ∈ R+ associated
with an initial condition x ∈ X at t = 0, and input u ∈ U.

Also we assume that the solution φ depends continuously on
initial states and external inputs at the neighborhood of the origin,
namely:

Assumption 2. For any ε > 0 and for any τ > 0 there exists δ > 0
so that for any x ∈ X : ∥x∥X ≤ δ and for any u ∈ U : ∥u∥U ≤ δ it
follows that ∥φ(t, x, u)∥X ≤ ε, for all t ∈ [0, τ ].

For the formulation of stability properties we use the compari-
son functions formalism:

K := {γ : R+ → R+ |γ is continuous, strictly
increasing and γ (0) = 0}

K∞ := {γ ∈ K |γ is unbounded }
L :=


γ : R+ → R+ |γ is continuous and strictly

decreasing with lim
t→∞

γ (t) = 0


KL := {β : R+ × R+ → R+ |β is continuous,
β(·, t) ∈ K, β(r, ·) ∈ L, ∀t ≥ 0, ∀r > 0}.

The main notions of this paper are:

Definition 1. System (1) is called

• input-to-state stable (ISS), if there exist β ∈ KL and γ ∈ K
such that ∀x ∈ X , ∀u ∈ U and ∀t ≥ 0 the following holds

∥φ(t, x, u)∥X ≤ β(∥x∥X , t)+ γ (∥u∥U). (4)

• locally input-to-state stable (LISS), if there exist β ∈ KL,
γ ∈ K and r > 0 such that the inequality (4) holds ∀x ∈ Br ,
∀u ∈ U : ∥u∥U ≤ r and ∀t ≥ 0.

In order to understand the essence of (L)ISS we introduce
several other properties:

Definition 2. System (1)

• is globally asymptotically stable at zero uniformly with respect
to state (0-UGASs), if ∃β ∈ KL, such that ∀x ∈ X , ∀t ≥ 0 the
following inequality holds

∥φ(t, x, 0)∥X ≤ β(∥x∥X , t). (5)

• is locally asymptotically stable at zero uniformly with respect
to state (0-UASs), if for certain β ∈ KL the estimate (5) holds
for all x ∈ Br with r > 0 small enough.

• is globally stable (GS), if ∃σ ∈ K∞, γ ∈ K∞ ∪ {0} such that
∀x ∈ X , ∀u ∈ U, ∀t ≥ 0 we have

∥φ(t, x, u)∥X ≤ σ(∥x∥X )+ γ (∥u∥U). (6)

• has asymptotic gain (AG) property, if ∃γ ∈ K∞ ∪ {0} such that
for all ε > 0, for all x ∈ X and for all u ∈ U there exists
τa = τa(ε, x, u) < ∞:

∀t ≥ τa ⇒ ∥φ(t, x, u)∥X ≤ ε + γ (∥u∥U). (7)

• has strong asymptotic gain (sAG) property, if ∃γ ∈ K∞ ∪ {0}
such that for all x ∈ X and for all ε > 0 there exists τa =

τa(ε, x) < ∞:

∀t ≥ τa, ∀u ∈ U ⇒ ∥φ(t, x, u)∥X ≤ ε + γ (∥u∥U). (8)

Both AG and sAG imply that all trajectories converge to the
ball of radius γ (∥u∥U) around the origin as soon as t → ∞. The
difference between AG and sAG is in a kind of dependence of τa on
states and inputs. In sAG systems this time depends on the state x
(and may vary for the states with the same norm), but it does not
depend on u. In AG systems τa depends both on x and on u.

A powerful tool to investigate ISS and LISS of control systems is
an ISS/LISS Lyapunov function.

Definition 3. A continuous function V : D → R+, 0 ∈ int(D) ⊂ X
is called a LISS Lyapunov function, if there exist r > 0 ψ1, ψ2 ∈

K∞, α ∈ K∞ and σ ∈ K such that Br ⊂ D and

ψ1(∥x∥X ) ≤ V (x) ≤ ψ2(∥x∥X ), ∀x ∈ Br (9)

and Lie derivative

V̇u(x) := lim
t→+0

1
t
(V (φ(t, x, u))− V (x))

of V along the trajectories of the system (1) satisfies

V̇u(x) ≤ −α(∥x∥X )+ σ(∥u(0)∥U) (10)

for all x ∈ Br and u ∈ U : ∥u∥U ≤ r .
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In [10, Theorem 1] it was shown that

Proposition 1. Existence of a LISS Lyapunov function implies LISS
of (1).

Nowwe are in a position to formulate the aims and structure of
the paper in a strict way. It has been shown in [5,6] that for ODE
systems it holds that:

• ISS ⇔ AG + GS ⇔ AG + 0-UGASs ⇔ AG + LISS.
• 0-UGASs ⇒ LISS.

In this paperwe prove that for infinite-dimensional systems (1) the
following statements are true

• if the nonlinearity f in (1) has some sort of uniform continuity
w.r.t. the inputs, then:
0-UAS ⇔ LISS ⇔ there exists a LISS-Lyapunov function for (1).

• without this additional uniformity the characterization of LISS
does not hold.

• AGwith zero gain+ sAG+GS+ LISS+ 0-UGASs ⇏ ISS. Hence
in infinite dimensions ISS (a uniform notion) is not equivalent
to combinations of nonuniform global notions like AG + GS.

We discuss these questions in Sections 3, 4, 5 respectively.

3. Characterization of local input-to-state stability

In this sectionwe derive a characterization of LISS property.We
rely upon the converse Lyapunov theorem for undisturbed systems
(1). To this end define:

Definition 4. A continuous function V : D → R+, 0 ∈ int(D) ⊂ X
is called a 0-UAS Lyapunov function, if there exist r > 0, ψ1, ψ2 ∈

K∞ and α ∈ K∞ such that {x ∈ X : ∥x∥X ≤ r} ∈ D and
∀x ∈ X : ∥x∥X ≤ r the following estimate holds:

ψ1(∥x∥X ) ≤ V (x) ≤ ψ2(∥x∥X ). (11)

Moreover, Lie derivative of V along the trajectories of the system
(1) with u = 0 satisfies

V̇0(x) ≤ −α(∥x∥X ) (12)

for all x ∈ X : ∥x∥X ≤ r .

The classical converse Lyapunov theorem for undisturbed
systems (1) is formulated as follows, see e.g. [7, Theorem 4.2.1]:

Proposition 2. Let f (·, 0) be locally Lipschitz continuous in a certain
neighborhood of x = 0. If (1) is 0-UASs, then there exists a Lipschitz
continuous 0-UAS Lyapunov function for (1).

Remark 1. Note that in [7, Theorem 4.2.1] an analyticity of a
semigroup is assumed. However, this assumption has not been
used in the proof of [7, Theorem 4.2.1] and was made just because
the book is devoted to analytic semigroups. Thus, [7, Theorem
4.2.1] still is true for merely strongly continuous semigroups.

Next result (which is closely related to the known fact about
robustness of the 0-UAS property [7, Corollary 4.2.3]) shows, that
a Lipschitz continuous 0-UAS Lyapunov function for (1) is, under
a certain assumption on the nonlinearity f , also a LISS Lyapunov
function for (1).

Proposition 3. Let Assumptions 1, 2 hold and let there exist σ ∈ K
and ρ > 0 so that for all v ∈ U : ∥v∥U ≤ ρ and all x ∈ X : ∥x∥X ≤

ρ we have

∥f (x, v)− f (x, 0)∥X ≤ σ(∥v∥U). (13)

Let V be a Lipschitz continuous 0-UAS Lyapunov function for (1). Then
V is also a LISS Lyapunov function for (1).
Proof. Let V : D → R+, D ⊂ X , with 0 ∈ int(D) be a Lipschitz
continuous (0-UAS) Lyapunov function for (1), which satisfies (12)
for x ∈ X : ∥x∥X ≤ r .

Let Assumption 1 hold and pick ρ given in the formulation of
the proposition so that Bρ ⊂ D.

Due to Assumption 2 there exist r1 ∈ (0, r), r2 ∈ (0, ρ) and
t∗ > 0 so that for all x ∈ X : ∥x∥X ≤ r1 and all u ∈ U : ∥u∥U ≤ r2
the solution φ(s, x, u) exists for s ∈ [0, t∗] and ∥φ(s, x, u)∥X ≤ ρ
for all s ∈ [0, t∗].

We are going to prove that V is a LISS Lyapunov function for (1).
To this end we derive a dissipative estimate for V̇u(x) for all x, u:
∥x∥X ≤ r1 and ∥u∥U ≤ r2. We have:

V̇u(x) = lim
t→+0

1
t


V

φ(t, x, u)


− V (x)


= lim

t→+0

1
t


V

φ(t, x, 0)


− V (x)

+ V

φ(t, x, u)


− V


φ(t, x, 0)


= V̇0(x)+ lim

t→+0

1
t


V

φ(t, x, u)


− V


φ(t, x, 0)


.

Since V is a 0-UAS Lyapunov function for (1), due to (12) it holds
for a certain α ∈ K∞ that

V̇u(x) ≤ −α(∥x∥X )+ lim
t→+0

1
t

V 
φ(t, x, u)


− V


φ(t, x, 0)

.
Since φ(t, x, u) ∈ D for all x, u : ∥x∥X ≤ r1 and ∥u∥U ≤ r2, and
since V is Lipschitz continuous on D, there exists L > 0 so that

V̇u(x) ≤ −α(∥x∥X )+ L lim
t→+0

1
t
∥φ(t, x, u)− φ(t, x, 0)∥X . (14)

Now we are going to obtain an estimate for ∥φ(t, x, u) −

φ(t, x, 0)∥X for t ∈ [0, t∗]. The variation of constants formula
implies:

∥φ(t, x, u)− φ(t, x, 0)∥X

=

 t

0
T (t − s)


f (φ(s, x, u), u(s))− f (φ(s, x, 0), 0)


ds


X

≤

 t

0

T (t − s)
 f (φ(s, x, u), u(s))− f (φ(s, x, 0), 0)


Xds.

Denote M := sup0≤s≤t∗ ∥T (s)∥ < ∞. With this notation we
proceed to

∥φ(t, x, u)− φ(t, x, 0)∥X

≤

 t

0
M


∥f (φ(s, x, u), u(s))− f (φ(s, x, 0), u(s))∥X

+ ∥f (φ(s, x, 0), u(s))− f (φ(s, x, 0), 0)∥X


ds.

Recalling that ∥φ(t, x, u)∥X ≤ ρ for all t ∈ [0, t∗], using the
inequality (13) and due to Lipschitz continuity of f w.r.t. the first
argument, there exists L2 > 0:

∥φ(t, x, u)− φ(t, x, 0)∥X

≤ ML2

 t

0

φ(s, x, u)− φ(s, x, 0)

Xds + Mtσ


sup
0≤s≤t

∥u(s)∥U


≤ ML2t sup
0≤s≤t

∥φ(s, x, u)− φ(s, x, 0)∥X + Mtσ

sup
0≤s≤t

∥u(s)∥U

.

The right hand side of the above inequality is nondecreasing in t
and consequently it holds that

sup
0≤s≤t

∥φ(s, x, u)− φ(s, x, 0)∥X

≤ ML2t sup
0≤s≤t

∥φ(s, x, u)− φ(s, x, 0)∥X + Mtσ

sup
0≤s≤t

∥u(s)∥U

.
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Pick t < t∗ small enough so that 1 − ML2t > 0. Then

sup
0≤s≤t

∥φ(s, x, u)− φ(s, x, 0)∥X ≤
Mt

1 − ML2t
σ

sup
0≤s≤t

∥u(s)∥U

.

Using this estimate in (14), taking the limit t → +0 and recalling
thatu(·) is a right-continuous function,we obtain for all x : ∥x∥X ≤

r1 and all u ∈ U : ∥u∥U ≤ r2 the LISS estimate

V̇u(x) ≤ −α(∥x∥X )+ LMσ

∥u(0)∥U


. (15)

This shows that V is a LISS Lyapunov function for (1). �

As a corollary of the previous proposition we obtain our main
result:

Theorem 4. Let Assumptions 1, 2 hold and let there exist σ ∈ K and
ρ > 0 so that for all v ∈ U : ∥v∥U ≤ ρ and all x ∈ X : ∥x∥X ≤ ρ
we have

∥f (x, v)− f (x, 0)∥X ≤ σ(∥v∥U).

Then for the system (1) the following properties are equivalent:

(i) 0-UAS.
(ii) Existence of a Lipschitz 0-UAS Lyapunov function.
(iii) Existence of a Lipschitz LISS Lyapunov function.
(iv) LISS.

Proof. The claim of the theorem is a consequence of Proposi-
tions 2, 3, 1 and of an obvious fact that LISS implies 0-UAS. �

Remark 2. If X = Rn and U = Rm for natural m, n, and if f is
continuous w.r.t. the second argument, then (13) holds with

σ(r) := sup
v∈U:∥v∥U≤r

sup
x∈X :∥x∥X≤ρ

∥f (x, v)− f (x, 0)∥X + r

due to compactness of closed balls in Rm. Thus, Theorem 4 implies
that 0-UGAS implies LISS for ODE systems (which was shown in
finite-dimensional context in [6, Lemma I.1]).

4. Necessity of uniformity w.r.t. inputs

In this section we show by means of an example that the ad-
ditional assumption in Theorem 4 cannot be dropped in infinite
dimensions. We show evenmore: a system, which satisfies Assump-
tions 1, 2 and is 0-UGASs, sAG, AG with zero gain and GS with zero
gain may still be not LISS.

Consider a system Σ with the state space X = l1 := {(xk)∞k=1 :
∞

k=1 |xk| < ∞} and with the input space U := PC(R+,R).
Let the dynamics of the kth mode ofΣ be given by

ẋk(t) = −
1

1 + k|u(t)|
xk(t). (16)

We use the notation φk(t, xk, u) for the state of the kth mode of
(16). Then φ(t, x, u) = (φk(t, xk, u))∞k=1 (we indicate here that the
dynamics of different modes are independent on each other).

Clearly, Σ is 0-UGASs, since for u ≡ 0 its dynamics are given
by ẋ = −x. At the same time the inequality ∥φ(t, x, u)∥X ≤ ∥x∥X
holds for all t ≥ 0, x ∈ X and u ∈ U, and thus Σ is GS with zero
gain.

Next we show step-by-step that:

(i) Σ satisfies Assumptions 1 and 2 (and thus belongs to the class
of systems which we consider).

(ii) Σ is AG with zero gain.
(iii) Σ is sAG with arbitrarily small (but necessarily nonzero)

linear gain. In other words, one must pay for uniformity, but
this payment can be made arbitrarily small.

(iv) Finally,Σ is not LISS.
(i) Assumption 2 is automatically satisfied, since as we
mentioned above the systemΣ is GSwith zero gain. Next we show
that Assumption 1 also holds.

Note thatΣ is globally Lipschitz, since for any x, y ∈ X and any
v ∈ U

∥f (x, v)− f (y, v)∥X =

∞
k=1

1
1 + k|v|

|xk − yk| ≤

∞
k=1

|xk − yk|

= ∥x − y∥X .

Now pick any x ∈ X and let us show that f (x, ·) is continuous at
any v ≠ 0. Consider

∥f (x, v)− f (x, v1)∥X

=

∞
k=0

 1
1 + k|v1|

−
1

1 + k|v|

|xk|
=

∞
k=0

k
|v1| − |v|


(1 + k|v1|)(1 + k|v|)

|xk|

≤ |v1 − v| sup
k∈N

k
(1 + k|v1|)(1 + k|v|)

∞
k=0

|xk|.

Since v ≠ 0 and we consider v1 which are close to v we assume
that v1 ≠ 0 as well. Then

sup
k∈N

k
(1 + k|v1|)(1 + k|v|)

≤ sup
k∈N

k
1 + k(|v1| + |v|)

= lim
k→∞

k
1 + k(|v1| + |v|)

=
1

|v1| + |v|
.

And overall we get that

∥f (x, v)− f (x, v1)∥X ≤
|v1 − v|

|v1| + |v|
∥x∥X .

Let |v1 − v| ≤ δ for some δ ∈ (0, |v|

2 ). Then |v1| ≥ |v|/2 and

∥f (x, v)− f (x, v1)∥X ≤
δ

3/2|v|
∥x∥X .

Now for any ε > 0 pick δ < |v|

2 so that δ
3/2|v|∥x∥X < ε (which is

always possible since v ≠ 0). This shows continuity of f (x, ·) for
v ≠ 0. Note that the choice of δ depends on ∥x∥X , but does not
depend on x itself.

Next we show that f (x, ·) is continuous at zero as well, but it
is no more uniform w.r.t. the first argument of f . Pick again any
x ∈ X . For any ε > 0 there exists N = N(ε, x) > 0 so that

∞

k=N+1 |xk| < ε
2 . We have for this x:

∥f (x, 0)− f (x, v1)∥X =

∞
k=0

k|v1|
1 + k|v1|

|xk|

=

N
k=0

k|v1|
1 + k|v1|

|xk| +

∞
k=N+1

k|v1|
1 + k|v1|

|xk|

≤

N
k=0

N|v1|

1 + N|v1|
|xk| +

∞
k=N+1

|xk|

<
N|v1|

1 + N|v1|
∥x∥X +

ε

2

≤ N|v1| ∥x∥X +
ε

2
.

Pick δ :=
ε

2∥x∥XN
. Then for all v1 ∈ U : |v1| ≤ δ it follows that

∥f (x, 0)−f (x, v1)∥X < ε. This shows continuity of f (x, ·) at zero for
any given x ∈ X . However, note that δ depends on x (since N does)
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and not only on ∥x∥X . Overall we have shown that Assumption 1 is
fulfilled forΣ .

(ii) Σ is AG with zero gain. For any x ∈ X , for any ε > 0 there
exists N = N(x, ε) ∈ N so that


∞

k=N+1 |xk(0)| < ε
2 .

The normof the state ofΣ at time t can be estimated as follows:

∥φ(t, x, u)∥X =

N
k=1

|φk(t, xk, u)| +

∞
k=N+1

|φk(t, xk, u)|

≤

N
k=1

|φk(t, xk, u)| +

∞
k=N+1

|φk(0, xk, u)|

≤

N
k=1

|φk(t, xk, u)| +
ε

2
.

Now we estimate the state of the kth mode of our system for all
k = 1, . . . ,N:

|φk(t, xk, u)| = e−
 t
0

1
1+k|u(s)| ds|xk(0)|

≤ e−
 t
0

1
1+k∥u∥U

ds
|xk(0)|

= e−
1

1+k∥u∥U
t
|xk(0)|

≤ e−
1

1+N∥u∥U
t
|xk(0)|, (17)

which holds for any u ∈ U and any xk(0) ∈ R. Using this estimate
we proceed to

∥φ(t, x, u)∥X ≤

N
k=1

e−
1

1+N∥u∥U
t
|xk(0)| +

ε

2
.

Clearly, for any u ∈ U there exists τa = τa(x, ε, u) so thatN
k=1 e

−
1

1+N∥u∥U
t
|xk(0)| ≤

ε
2 for t ≥ τa.

Overall we see that for any x ∈ X , for any t ≥ 0 and for all u ∈ U
there exists τa = τa(x, ε, u), so that for all t ≥ τa it holds that
∥φ(t, x, u)∥X ≤ ε. This shows that Σ is AG with γ ≡ 0. However,
the time τa depends on u and thus the above argument does not
tell us whether the system is strongly AG.

(iii) Next we show that Σ is sAG, but we should pay for this
by adding a linear gain. However, this linear gain can be made
arbitrarily small.

In (17) we have obtained the following estimate for the state of
the kth mode ofΣ:

|φk(t, xk, u)| ≤ e−
1

1+k∥u∥U
t
|xk(0)|.

This expression can be further estimated as:

|φk(t, xk, u)| ≤ e
−

1

1+kmax

∥u∥U,

2k
r |xk(0)|

 t

· max

|xk(0)|,

r
2k

∥u∥U


. (18)

For |xk(0)| ≥
r
2k

∥u∥U we obtain

|φk(t, xk, u)| ≤ e
−

1

1+k 2k
r |xk(0)|

t
|xk(0)|. (19)

For |xk(0)| ≤
r
2k

∥u∥U the inequality (18) implies

|φk(t, xk, u)| ≤ e−
1

1+k∥u∥U
t r
2k

∥u∥U ≤
r
2k

∥u∥U. (20)

Overall, for any xk(0) ∈ R and any u ∈ U we obtain from (19) and
(20):

|φk(t, xk, u)| ≤ e
−

1

1+k 2k
r |xk(0)|

t
|xk(0)| +

r
2k

∥u∥U. (21)
Having this estimate for the state of the kth mode, we proceed to
the estimate for the whole state ofΣ:

∥φ(t, x, u)∥X =

∞
k=1

|φk(t, xk, u)|

≤

∞
k=1

e
−

1

1+k 2k
r |xk(0)|

t
|xk(0)| +

∞
k=1

r
2k

∥u∥U

=

∞
k=1

e
−

1

1+k 2k
r |xk(0)|

t
|xk(0)| + r∥u∥U. (22)

This estimate is true for all t ≥ 0, all x ∈ X , all u ∈ U and for any
r > 0.

Nowwe apply the trick used above in the proof that the system
is AG. For any x ∈ X , for any ε > 0 there exists N = N(x, ε) ∈ N
so that


∞

k=N+1 |xk(0)| < ε
2 . Using this fact we continue estimates

from (22):

∥φ(t, x, u)∥X ≤

N
k=1

e
−

1

1+k 2k
r |xk(0)|

t
|xk(0)|

+

∞
k=N+1

e
−

1

1+k 2k
r |xk(0)|

t
|xk(0)| + r∥u∥U.

≤

N
k=1

e
−

1

1+k 2k
r |xk(0)|

t
|xk(0)| +

ε

2
+ r∥u∥U.

Now for the above ε and x we can find sufficiently large time
τa = τa(ε, x) (clearly, τa depends also on N , but N itself depends
only on x and ε), so that for all u ∈ U and all t ≥ τa

N
k=1

e
−

1

1+k 2k
r |xk(0)|

t
|xk(0)| ≤

ε

2
.

Overall, we obtain that for any r > 0, for all ε > 0 and for any
x ∈ X there exists τa = τa(t, x):

∥φ(t, x, u)∥X ≤ ε + r∥u∥U,

for all u ∈ U and all t ≥ τa. This shows thatΣ satisfies strong AG
property with the gain γ (s) = rs.

In order to finish the proof of (iii), we show that Σ is not sAG
for the gain γ ≡ 0.

Indeed, pick ε :=
1
2 and x = e1 = (1, 0, . . . , 0, . . .)T and

consider the constant inputs u(·) ≡ c. The corresponding solution
will have only one nonzero component—the first one. The norm of
the state equals

∥φ(t, e1, u)∥X = |φ1(t, 1, u)| = e−
1

1+c t .

If Σ would be sAG with the zero gain, then it would exist a time
τa, which does not depend on u, so that for all c and all t ≥ τa it
holds that e−

1
1+c t ≤

1
2 . But this is false since e

−
1

1+c τa monotonically
increases to 1 as long as c → ∞. Thus,Σ is not sAGwith zero gain.

(iv) Next we show that Σ is not LISS. To this end assume that
Σ is LISS and hence there exist r > 0, β ∈ KL and γ ∈ K∞ so
that the inequality (4) holds for all x ∈ X : ∥x∥X ≤ r and for all
u ∈ U : ∥u∥U ≤ r .

Pick a constant input u(t) = ε for all t ≥ 0, where ε > 0 is
chosen so that max{ε, 3γ (ε)} ≤ r . This is always possible since
γ ∈ K∞. Denote c := γ (ε).

LISS property of Σ implies that for all x ∈ X with the norm
∥x∥X = 3c ≤ r and for all t ≥ 0 it holds that

∥φ(t, x, u(·))∥X ≤ β(3c, t)+ c. (23)
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Since β ∈ KL, there exists t∗ (which depends on c , but does not
depend on x) so that β(3c, t∗) = c1 and thus for all x ∈ X with
∥x∥X = 3c it must hold

∥φ(t∗, x, u(·))∥X ≤ 2c. (24)

Now consider the initial states of the form x<k> = 3c · ek, where ek
is the kth standard basis vector of X = l1. Certainly, ∥x⟨k⟩∥X = 3c
for all k ∈ N. Then

∥φ(t∗, x⟨k⟩, u(·))∥X = |φk(t∗, 3c, u(·))| = e−
1

1+kε t
∗

3c.

Now, for any t∗ > 0 there exists k so that e−
1

1+kε t
∗

3c > 2c , which
contradicts to (24). This shows thatΣ is not LISS.

Remark 3. It is possible to check directly, that the second
assumption of Theorem 4 does not hold.

Remark 4. The fact that ‘AG with zero gain’ and ‘sAG with zero
gain’ properties are not equivalent is not the novelty of infinite-
dimensional systems. Above arguments show, that these two
notions are not equivalent already for a particular one-dimensional
mode of the above example:

ẋ(t) = −
1

1 + |u(t)|
x(t). (25)

This system is AG with zero gain and 0-GAS, but it is not sAG with
zero gain.

5. 0-UGASs + sAG + LISS + GS does not ensure ISS

In the previous example we have shown that a systemwhich is
0-UGASs, sAG, AG with zero gain and GS with zero gain, does not
have to be LISS. Next we modify this example to show that if the
system in addition to the above list of properties is LISS, this still does
not guarantee ISS.

Consider a system Σ with the state space X := l1 and input
space U := PC(R+,R). Let also the dynamics of the kth mode of
Σ be given by

ẋk(t) = −
1

1 + |u(t)|k
xk(t). (26)

We continue to use the notation φk(t, xk, u) for the state of the kth
mode (26).

As in Section 4 one can prove that this system satisfies
Assumptions 1 and 2, is 0-UGASs, GS with zero gain, AG with zero
gain, and sAG with a nonzero gain (we skip this proof since it is
completely analogous). Moreover, for u : ∥u∥U ≤ 1 and for all
x ∈ X it holds that

∥φ(t, x, u)∥X ≤ e−
1
2 t∥x∥X (27)

and thusΣ is LISS with zero gain and with r = 1.
The proof thatΣ is not ISS goes along the lines of Section 4, with

the change that the norm of the considered inputs should be larger
than 1.

1 Note that any β ∈ KL satisfying the LISS estimate automatically satisfies
β(r, 0) ≥ r for all r > 0 (consider t = 0 and u ≡ 0 in LISS estimate).
6. Conclusions

We have shown that 0-UAS automatically implies LISS for the
system (1) if the right hand side f has a kind of uniform continuity
w.r.t. inputs. If this uniformity is not present, the equivalence
between 0-UAS and LISS may not hold. We have shown that sAG
+ LISS + GS + 0-UGAS does not imply ISS. The challenging problem
for the future is to derive the characterizations of the global ISS
property.
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