This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at

http://dx.doi.org/10.1109/TAC.2018.2824983

Criteria for input-to-state practical stability

Andrii Mironchenko

Abstract—For a broad class of infinite-dimensional systems,
we characterize input-to-state practical stability (ISpS) using the
uniform limit property and in terms of input-to-state stability. We
specialize our results to systems with Lipschitz continuous flows
and evolution equations in Banach spaces. The characterization
of ISpS in terms of the limit property is novel already in the
special case of ODE systems.

Index Terms—input-to-state stability, nonlinear systems, prac-
tical stability, infinite-dimensional systems.

I. INTRODUCTION

The concept of input-to-state stability (ISS), introduced in
[1], has become indispensable for various branches of nonlin-
ear control theory, such as robust stabilization of nonlinear
systems [2], design of nonlinear observers [3], analysis of
large-scale networks [4], [5], etc.

However, in many cases it is impossible (as in quantized
control) or too costly to construct a feedback, ensuring ISS
behavior of the closed loop system. To address such applica-
tions, a relaxation of the ISS concept has been proposed in [4],
called input-to-state practical stability (ISpS, practical ISS).
This concept is extremely useful for stabilization of stochastic
control systems [6], control under quantization errors [7],
[8], sample-data control [9], study of interconnections of
nonlinear systems by means of small-gain theorems [4], [10],
etc. Practical ISS extends the earlier concept of practical
asymptotic stability of dynamical systems [11]. In some works
practical ISS is called ISS with bias, see e.g. [8], [12].

Criteria for ISS in terms of other stability properties are
among foundational theoretical results in ISS of ordinary
differential equations (ODEs). In [13] Sontag and Wang have
shown that ISS is equivalent to the existence of a smooth ISS
Lyapunov function and in [14] the same authors proved an
ISS superposition theorem, saying that ISS is equivalent to
the limit property combined with a local stability. Character-
izations of ISS greatly simplify the proofs of other important
results, such as small-gain theorems for ODEs [5] and hybrid
systems [15], [16], Lyapunov-Razumikhin theory for time-
delay systems [17], [18], non-coercive ISS Lyapunov theorems
[19], relations between ISS and nonlinear L, — L; stability
[20], to name a few examples.

Characterizations of ISS for ODEs in [14] heavily exploit
the topological structure of an underlying state space R”,
as well as a special type of dynamics (ODEs). Trying to
generalize these criteria to infinite-dimensional systems, we
face fundamental difficulties: closed bounded balls are never
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compact in infinite-dimensional normed linear spaces, nonuni-
formly globally asymptotically stable nonlinear systems do not
necessarily have bounded reachability sets, and even if they
do, this still does not guarantee uniform global stability [19].
These difficulties have been overcome in a recent work [19],
where characterizations of ISS have been developed for a gen-
eral class of control systems, encompassing evolution PDEs,
differential equations in Banach spaces, time-delay systems,
switched systems, ODEs, etc. Characterizations of local ISS
of infinite-dimensional systems were obtained slightly earlier
in [21]. The results in [19] naturally extend criteria for ISS
of ODEs developed in [14]. New notions and results obtained
in [19] establish a solid background for a solution of further
problems. The concept of a uniform limit has been useful
in the theory of non-coercive Lyapunov functions [19], [22],
[23] and for characterization of practical uniform asymptotic
stability [23].

Despite a great importance of practical ISS for nonlinear
control theory, much less is known about characterizations
of practical ISS. There are two complementary directions,
in which one could characterize ISpS property: in terms of
weaker properties as e.g. limit or asymptotic gain properties
and in terms of stronger properties as ISS. The first kind of
results is of virtue for the verification of ISpS property, and the
second type of results is important if we know that the system
is ISpS and would like to get some additional insights about
the properties of this system. In ODE case, characterizations
of ISpS via (stronger) ISS property have been shown by
Sontag and Wang in [14, Proposition VI.3], which states (in
conjunction with [14, Theorem 1]) that an ODE system is
ISpS if and only if there is a compact set &/ C R" so that the
system is ISS w.r.t. «/. On the other hand, characterization
of ISpS in terms of weaker properties (as limit or asymptotic
gain property) remained unexplored even for ODE systems.

In this paper we develop criteria for practical ISS in terms
of both stronger and weaker properties for a broad class of
infinite-dimensional systems. The understanding of the nature
of practical ISS will be beneficial for the development of
quantized and sample-data controllers for infinite-dimensional
systems and will give further insights into the ISS theory of
infinite-dimensional systems, which is currently a hot topic
[24], [25], [26], [271, [28], [21], [19], [29], [30]. Since
characterizations for ISS have played a key role in the proof of
general small-gain theorems for couplings of n ODE systems
[5], it is natural to expect that the characterizations of ISpS,
obtained in this paper will be helpful for the proof of such
general small-gain theorems for networks of ISpS systems.

We prove in Section III that a nonlinear infinite-dimensional
control system Y possessing bounded reachability sets is
practically ISS if and only if there is a bounded subset </ of
the state space so that ¥ has a uniform limit property (ULIM)
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w.r.t. </. This criterion can be used to prove ISpS of control
systems. On the other hand, we show that any ISpS control
system has a so-called complete uniform asymptotic gain
property (CUAG), which is stronger than uniform asymptotic
gain property (UAG) as defined in [14], [19].

An important difference of this criterion of ISpS to the
criteria of ISS proved in [14], [19] is that it does not involve
any kind of stability w.r.t. the set «# (which is necessary for
ISS), which significantly simplifies verification of the ISpS
property.

We base ourselves on machinery developed in [19] for char-
acterization of ISS of general infinite-dimensional systems, in
particular, we use the notion of the uniform limit and results
from [19] related to this property. Additionally, we develop
two further technical results which are of independent interest.

Firstly, we introduce a CUAG property and show in Propo-
sition I11.4 that a control system possesses this property if and
only if it has a UAG property and its finite-time reachability
sets are bounded.

Secondly, using this CUAG characterization we show in
Proposition I11.7 that if a system has the uniform limit property
w.r.t. a certain bounded set </ of a state space X and if this
system has bounded finite-time reachability sets, then there is
a set B O o so that ¥ has a (much stronger than ULIM)
CUAG property w.rt. . In our proof we construct a family
of such sets.

For systems with Lipschitz continuous flows, we improve
some of our criteria in Section IV by showing that X is ISpS
if and only if there is a bounded invariant (under uniformly
bounded controls) set o/ so that X is ISS w.r.t. o7

Even specialized to ODE systems our main results are novel.
In Section IV-C we show that an ODE system ¥ is practically
ISS < there is a bounded set </ so that ¥ has a (non-uniform)
limit property w.r.t. of .

A. Notation

The following notation will be used throughout these notes.
Denote R, := [0, +c0). For an arbitrary set S and n € N the
n-fold Cartesian product is S" : =8 X ... x S.

Let X be a normed linear space with a norm || -|| and let </
be a nonempty set in X. For any x € X we define a distance
from x € X to & by |x|y := infyey ||x — y||. Define also
|l<? || := supyc,y ||x]|. The open ball in a normed linear space
X with radius r around &/ C X is denoted by B,(&/) :={x €
X : |x|o < r}. For short, we denote B, := B,({0}). Similarly,
B,y :={u € :||u||9 < r}. The closure of a set § C X w.r.t.
norm || || is denoted by S. With a slight abuse of notation we
define By(«/) := o7 and By 4 = {0}.

For the formulation of stability properties the following
classes of comparison functions are useful:

H :={y:R; — Ry | 7 is continuous, strictly
increasing and y(0) =0},
He  :={y€ x| vis unbounded },

< :={y:R; — R, | 7 is continuous and strictly
decreasing with tILm y(t) =0},
H L ={B:Ry xR, —R,;| B is continuous,
B(.t)e, B(r,-)e L, ¥Vt >0, Vr>0}.

http://dx.doi.org/10.1109/TAC.2018.2824983

II. PRELIMINARIES

In this paper, we consider abstract axiomatically defined
time-invariant and forward complete systems on the state space
X which are subject to a shift-invariant set of inputs % .

Definition IL.1. Consider the triple X = (X,%,¢) consisting
of

(i) A normed linear space (X,||-||), called the state space,

endowed with the norm || - ||.
(i1) A set of input values U, which is a nonempty subset of

a certain normed linear space.

(iil) A space of inputs % C {f:Ry — U}, 0 € % endowed
with a norm || - || satisfying two axioms:
The axiom of shift invariance states that for all u € %
and all T > 0 the time shift u(-+ 7) belongs to % with
lullz = [lu(- +7)ll2 -
The axiom of concatenation is defined by the requirement
that for all u;,u, € % and for all ¢ > 0 the concatenation
of u; and u, at time ¢

7), if 7€ /0,¢],

()= {0 Eelod (1)
up(t—t), otherwise,

belongs to % . Furthermore, if wup, = 0, then

ol < Jlmlle -
(iv) A transition map ¢ : R, x X X Z — X.

The triple X is called a (forward complete) control system, if

the following properties hold:

(X1) Forward completeness: for every (x,u) € X x % and for
all + > 0 the value ¢(z,x,u) € X is well-defined.

(X2) The identity property: for every (x,u) € X x %/ it holds
that ¢(0,x,u) = x.

(X3) Causality: for every (t,x,u) € Ry x X x %, for every ii €
% , such that u(s) = i(s), s € [0,7] it holds that ¢ (¢,x,u) =
O(z,x,i0).

(X4) Continuity: for each (x,u) € X x % the map ¢+ ¢ (t,x,u)
is continuous.

(X5) The cocycle property: for all t,h >0, forall xe X, u € %
we have ¢ (h, ¢ (¢,x,u),u(t+-)) = ¢(r+h,x,u).

Remark IL.2. By contrast to the paper [19], upon which this
note is based, we impose here an additional requirement on
the space %, that the concatenation of any input u with a
zero input has the norm which is not larger than ||u||4 . This
condition is satisfied by most of the ”natural” input spaces.

Definition IL.3. Let a control system ¥ = (X,%,¢), a real

number s > 0 and &/ C X, &/ # 0 be given.

o o is called s-invariant if ¢ (t,x,u) € o forallt >0, x € o
and u € B .

o An s-invariant set .2/ C X is called robustly s-invariant if for
every € >0 and any & > 0 there is a § = 6(€,h) >0, so that

2)

Remark IL4. If & = {0}, then robust O-invariance of such
o/ is precisely the continuity of ¢ w.r.t. states and inputs at
the trivial equilibrium, see [19]. The concept of s-invariance
seems to be less standard, but it helps a lot to establish the
relation between ISS and ISpS in Theorem IV.6, due to the

(€ [0.h], Ixl <8, uly <8 = [0(ru)ly <e.
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fact that it is much easier to show robustness of s-invariant
sets with s > 0 than with s =0, see Lemma IV.3.

The central notion of this paper is:

Definition IL5. A control system ¥ = (X,%,¢) is called
(uniformly) input-to-state practically stable (ISpS) w.rt. a
nonempty set </ C X, if there exist f € 4., v € ., and
¢ > 0 such that for all x € X, u € % and t > 0 the following
holds:

19t x,1)| o7 < B(lxlrs 1) +¥(llutl| 2 ) +c. 3)

If ISpS property w.r.t. & holds with ¢ := 0, then X is called
input-to-state stable (ISS) w.r.t of .

In what follows we assume that the set, w.r.t. which the
stability property is considered (usually denoted by <f) is
always nonempty.

We are interested in practical ISS w.r.t. bounded subsets of
X. The following simple result holds:

Proposition I1.6. Let ¥ be a control system as in Defini-
tion IL1. If ¥ is ISpS w.r.t. a certain bounded set <y C X,
then ¥ is ISpS w.r.t. any bounded subset of X.

Proof. Let <] be a bounded subset of X and let X = (X, %, ¢)
be ISpS w.r.t. 27 . Using a simple inequality

[l = [l ]l < fxlap < lxcll + [, C)

which holds for all x € X, as well as the fact that f(a+b,t) <
B(2a,r)+ B(2b,t) for all a,b,t > 0, we arrive at

1@, w)l| = [l < [ (t,,u)]
< Bl + [l [l 1) + v([lu

w)+c

< BQIIxll, 1)+ B2l 1) + v(llullz ) +ec.

Defining & := B(2||#4]|,0) + ||« || + ¢ we see that

o @,x,u)|l < BQlxll,2) +¥(llullz) +é. (5)
Using (5) and (4) once again, we obtain that X is ISpS w.r.t.
any bounded &/ C X. O

Proposition II.6 motivates the following definition:

Definition IL.7. A control system X = (X, % ,¢) is called ISpS,
if there is a bounded set .2/ C X so that X is ISpS w.r.t. &7.

Our aim is to prove criteria for practical ISS in terms
of more basic stability properties. Next we enlist the most
important of such notions.

Definition IL.8. A control system £ = (X, %,¢)

e has bounded reachability sets (BRS), if for any C > 0 and
any 7 > 0 it holds that

sup ¢, x,u)| < oo.
X[ <C; |lull <C, 1€[0,7]
o is called uniformly globally bounded (UGB), if there exist
a bounded set &/ C X, functions o,y € J and ¢ > 0 such
that for all x € X, and all u € % it holds that

10(t,5,0) .y < 0(xl) + Wllull2) +¢ Vi=0. (6)
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o has the uniform asymptotic gain (UAG) property w.rt. of C
X, if there exists a ¥ € %z such that for all €,r > 0 there is
aT=1(g,r)<oos.t forall ue % and all x € B,(&)

9(t,x,u)| s < &+ 7([Jull2). (7

e has the limit property (LIM) w.rt. o/ C X if there is a y €
Heo: forall x € X, u € % and € > 0 there is a r =1(x,u,€):

10(t,x,u)lr < &+ y(llulla)-

« has the uniform limit property (ULIM) w.r.t. o C X, if there
exists y € e so that for all € >0 and all r > 0 there is a
T=1(€g,r) s.t. forall u e %:

t>1t =

oy <r = 3t <t(e,r): [@(t,xu)ls <e+v(u

). (8)

Remark II.9. For ODEs forward completeness implies BRS
property, see [31, Proposition 5.1]. For co-dimensional systems
this is not always the case (see [19, Example 2]).

Note that trajectories of ULIM systems do not only ap-
proach the ball BY(HMII%)("% ) (as trajectories of LIM systems
do), but they do it uniformly. Indeed, the time of approacha-
bility T depends only on the norm of the state and € and does
not depend on the state itself.

Uniform asymptotic gain property assures that the trajecto-
ries possess a uniform convergence rate. However, UAG prop-
erty per se does not guarantee that the solutions possess any
kind of uniform global bounds (one can construct examples
of control systems, illustrating this fact, using ideas from [19,
Example 2]). Since it is often desirable both to have uniform
attraction rates as well as uniform bounds on solutions, we
introduce (motivated by [32, Definition 4.1.3], where a similar
concept with ¥ =0 has been employed) a new notion:

Definition I1.10. We say that a control system X satisfies the
completely uniform asymptotic gain property (CUAG) w.r.t.
o/ C X, if there are B € AL, y€ Ko and C > 0 s.t. for all
xeX,ue,t>0 it holds that:

10(t,x,u) | < B(|xler +C,0) + ¥([[ull2)- ©)

In Section III-A we show that CUAG is equivalent to a
combination of BRS and UAG properties.

III. CHARACTERIZATIONS OF ISPS

In this section we prove the following characterization of
ISpS:

Theorem III.1. Let X be a control system as in Definition II.1.
The following statements are equivalent:

(i) X is ISpS

(ii) There is a bounded 0-invariant set </ C X so that X is

CUAG w.rt. .
(iii) X is BRS and there is a bounded set o/ C X so that X

is ULIM w.rt. <.

Theorem III.1 can be used in two ways. On the one hand, to
prove ISpS of a system, we can merely check the conditions
in item (iii) of Theorem III.1. On the other hand, if we know
that a certain system is ISpS, item (ii) shows that it enjoys
also a CUAG property w.r.t. a certain bounded O-invariant set.
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The proof will be divided into several lemmas which will
be subdivided into two subsections. We start with a character-
ization of the CUAG property.

A. Characterization of CUAG property

We start with a preliminary result.

Proposition IIL1.2. Let ¥ be a control system. If ¥ is BRS and
ULIM w.r.t. certain bounded set o/ C X, then X is UGB.

Proof. This claim was proved for «# = {0} in [19, Proposition
7]. The proof for general bounded </ is analogous. O

Now we provide a simple restatement of the UGB property.

Lemma IIL.3. A control system ¥ is UGB w.rt. o/ C X if and
only if there are 01,y € F#ew and ¢ > 0 so that
9(t,x,u)| o < 01 (Ix]r + )+ V([[ull)- (10)

Proof. Let X be UGB. Then there are ¢,7 € . and ¢ > 0 so
that for any x € X, any u € %/ and any ¢ > 0 it holds that

O (|xler) +¥(llull 2 ) +¢

O (¥l 4 ) [y e+ y(fu
= O1(xler + )+ ¥(llull2)

for oy(r) := o (r)+r, r > 0. Clearly, 0] € J# and hence (10)

holds.

Conversely, let (10) hold. Then there are o},y € J#, and
¢>0s.t. for any x € X, any u € % and any ¢ > 0 it holds that

0@t xu)ler < o1l +) +1(]|u
< 01(2xle) +1(u

and thus X is UGB. O

‘(p(trxvu)',d

IAIA

%)

)
(‘7/) + 01 (2(’),

The following proposition gives a useful characterization of
CUAG.

Proposition II1.4. Let o/ C X be a bounded set. A control
system ¥ is CUAG w.rt. of < X is BRS and UAG w.rt. <.

Proof. ”=". Let £ be a CUAG control system with the
corresponding f3, 7, C as in (9). Then X is BRS. Now for
every € >0 and any r > 0 pick 7(g,r) as a solution of the
equation B(C+r,7) = € (if it exists), or set T(g,r) :=0, if the
equation has no solution. This shows UAG of ¥ w.r.t. &/ with
this 7.

”<". Let a control system ¥ be UAG w.r.t. o/ and BRS.
According to Proposition II1.2, the system ¥ is UGB and in
view of Lemma IIL.3 there are 0},y € %, and ¢ > 0 so that
(10) holds forall xe X, t>0and u € % .

Without loss of generality, we may assume that v in (7) is
the same as in (10) (otherwise pick y as a maximum of both
of them).

Fix arbitrary r € R and define €, :=27"01(r+c¢), forn €
N. The UAG property implies that there exists a sequence
of times T, := 7(&,,r), n € N which we may without loss of
generality assume to be strictly increasing, such that for all
X€B, () and all u € %

10(t,x,u) | < &+ ¥([[ull2)

vVt > 1,.
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From Lemma III.3 we see that the previous inequality is valid
also for n =0, if we set 7 := 0. Define @(r,1,) := &,_1 =
27"l (r4c), forn €N, n#0 and @(r,0) := 2&y = 20y (r +
c). Here we assume r € [—c, +o0).

Now extend the definition of & to a function @(r,-) € .2,
r € [—c,+oo) (see [19, Lemma 7] for details) so that

0(t,x,1)| o7 < O(|x|.r,2) + V(|2 )- (1D

Set o(rt):=®d(r—c,t), r>0,1>0.
As in the proof of [19, Lemma 7], there is § € #.Z so
that @(r,t) < B(r,¢t) for all r,r > 0. From (11) we obtain

0(t,x,u)ler < B(Ixler +c,0) + ¥(llull2 ),
which shows CUAG of X. O
Proposition IIL5. [f there is a bounded of C X so that a

control system ¥ = (X,%,9) is CUAG w.rt. </, then X is
ISpS.

Proof. Let L= (X,%,¢) be a control system which is CUAG
w.r.t. certain bounded &/ C X. Then there are f € . and
Y€ s so that for all xe X, ue %, t >0 we have

9t xu)ls < Bl +Cot) +y([lullz)
< BQ@2xlars1) +B2C, 1) +¥(||ullz )
< B, 1) +B(2C,0) + v([ull ),
which shows ISpS of X. O

B. Improving stability properties via enlarging of the attract-
ing set

Assume that a control system X is ULIM w.r.t a certain set
&/ C X. Then it is clear that ¥ is ULIM w.r.t. any & D /.
However, it may exist certain subsets of X w.r.t. which ¥ has
better properties than merely ULIM. In this section we show
that this is indeed the case provided X is BRS. We exploit a
simple lemma:

Lemma IIL6. Let f: R, — R be strictly increasing. Then
gt %fé f(s)ds is again strictly increasing.

Assume that ¥ = (X, % ,¢) is given. For any o/ C X, any
€ >0 and any y € %, define

Aoy ={9(t,x,u) 11 €Ry, x € Be(), |lull <7 '(§)}. (12)

Note that from the identity axiom (X2), for each € > 0 and any
Y € s it holds that o/ C B¢(«/) C @ y. The construction
of the sets .7 , is motivated by the notion of the positive
prolongation of a set, see [33].

Next we show the central technical result in this paper. It
may be viewed as a strengthening of [14, Lemma VI.2].

Proposition IIL.7. Assume that ¥ is a BRS control system and
Y has the ULIM property w.r.t. a bounded (not necessarily 0-
invariant) set of C X, with Yy € s as in (8). Then for any
€ > 0 the set gy is bounded, O-invariant and ¥ is CUAG
WLt g y.

Proof. We divide the proof into four parts.
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I. Boundedness of <% y. Pick any € >0, any R > 0 and fix
them. Since ¥ is ULIM w.r.t. &, there is a T = %(¢,R) >0 so
that for any u € %

(13)

- _ €
Wl <R = F <7 |9(Fxu)ly < 5 +1(ullz).

Without loss of generality we can assume that 7 is decreasing
w.r.t. € and increasing w.r.t. R. Then 7 is integrable. Define

2 2R re dend
R) = — T R R;.
7(€,R) SR/R /8/2’5(61, 1)derdR,

Since 7 is strictly increasing w.r.t. the second argument and
strictly decreasing w.r.t. the first one, for any €,R > 0 we have
that

min{Z(&;,R1): € € [e/2,€], R € [R,2R]} = ©(¢,R)

and thus 7(g,R) > T(€,R).

By standard lemmas from analysis, 7 is continuous.

Let us show that 7 is increasing w.r.t. R. Pick any R;,R, >0
so that Ry > R;. We have for i = 1,2:

2 e 1 2R
T(&,R; :f/ —/ T(€1,R)dRde; .
(&:Ry) € Je/2 R; JR; (&1, R) !

Since %(g,-) is strictly increasing, and since R, > R;, we have:
1 2R» 1 R{+Ry
7/fmmw>7/ #(e1,R)dR
RZ Ry R2 Ry

Again since 7(g;,-) is strictly increasing and applying

Lemma II1.6 we see that
1 R1+R, 1 2R
—j' ﬂ%mw>f/ #(e1,R)dR.

Ry Jr, 1 JR

This shows that 7(e,R;) > 7(€,R;), and thus 7 is increasing
w.r.t. the second argument.

Analogously, 7 is decreasing w.r.t. €. Consequently, for any
uew

_ _ £
Wl <R = I <t(e,R): [9Fxu)l < 5 +V(|lu

) (14)

and in particular
€
¥l < 5 +v(llull2)

= Fe(,7(e, 5+ lulla) s 190G, %0l < S+¥lul)

This means, that trajectories corresponding to the input u,
emanating from Be ), )(«7) return to this ball in time not
larger than 7(&, % + y(||u|% )). In particular, for any € > 0, any
x€Bg(o/) and any u € %: ||ull <y (%) there is 7 < 7(¢, €)
so that ¢ (7,x,u) € Be().

For any ¢ > 0 due to the cocycle property it holds that

Ot +1,x,u)=¢(t,0(F,x,u),ulf+-)).

The axiom of shift invariance tells us that |ju(f + -)
lull2z <y~ '(%5). Hence ¢(t+17,x,u) € oy for all 1 >0 by
definition of @ , and for our system X the set 7 , can be
represented as

v <

Fey={0(t.5,0) 1 €(0,7(2,8)], x€Be( ), ully <77 ()}

Since X is BRS, %77 is bounded for any € > 0.
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IL. 0-invariance of 7 ;. Let y € <7 ;. Then there are certain
s>0,x€Be() and u € U: ||ully <y '(§) so that y =
@ (s,x,u). Due to cocycle property it holds for any ¢ > 0 that

u(t), ifte]0,s],
0, otherwise.

¢(t’y’0):¢(t+S,X,W), W(T) ::{

By the axiom of concatenation we have w € %, ||w|q <
Julr <7°'(5) and hence §(1,,0) € ..

IIL X is UAG w.r.t. o ,. Let us fix £ >0 and R > 0 and
revisit the implication (14), which implies that

|.X|M7 < R> ||bt

2 <y '(§) = F<t: |¢(Fxu)|s <e (15)
where 7 := t(€,R), and for the same T we have:

s <R, flullz > v7"(5)
= F<t: [¢@F,xu)la <2y(||u

(16)

(/7/).
Taking (15) and (16) and using the reasoning exploited to show
boundedness of .7 , we obtain

o <R, flullr <y ' (5), 127 = @(t,xu) € ey (17)
and

Ko SR, ull =7 ' (5), 1> 7T = §(t,x,u) € Doyl

(18)

Thus, for all u € % we have
|X|or <R, t > 1T(R,€) = ¢(t,x,u) € %,VU%}/(HM\\%),}/- (19)

As a7, is bounded for any k > 0, the following function is
well-defined:

fe:se> sup [[x]|lap,, s>0. (20)

XEs y
Since @, y C %,y for ki < kz, fe is nondecreasing and
fe(s) =0 for s € [0,€]. Hence there exists O € H#o: fe(s) <
O¢(s) for all s > 0.
With this notation we can reformulate (19) into

x|l <R, uc ¥, t>1(R,€)

(2D
= 00, x )|, < 0e2¥([Jull2 ).
By (4), there is a C = C(g) so that |x[o < |x[e, +C.
Define %(R,€) := t(R+C,¢€). We have:
by <R, uc,t>1t(Re
tlo < (®.¢) )

= [0t u)|a, < 0e(2Y((lull2))-

This shows that X is UAG w.r.t. o7 ;.

Note that here € is a design parameter of a set @/ , W.r.t.
which X is UAG, and it is not connected to the parameter €
in the Definition I1.8 of the UAG property.

IV. X is CUAG w.r.t. < y. Follows by Proposition 1IL.4. [J

Remark IIL.8. Proposition III.7 shows under certain assump-
tions that X is UAG w.r.t. %_"y for any € > 0. It is natural to ask,
what is the smallest set w.r.t. which X is UAG, in particular,
whether X is UAG w.r.t. (g0 <% y. We do not follow this line
here, but a reader may consult [23, Section 3.2] for related
results. In order to understand additional difficulties which
arise on this way, note that if & < &, then f¢, (s) > fe,(s)
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for all s € Ry (this follows from (20)). However, this does not
imply that there is a continuous function fy with f5(0) =0 so
that fy(s) > fe(s) for any s > 0 and any € > 0.

Finally, we can prove the main result of this paper:

Proof. (of Theorem III.1)

(i) = (ii). Assume, that ¥ is an ISpS control system. Then
there are B € ¥ L, y € e and ¢ > 0 so that for all x € X,
t >0 and u € Z we have

19 @,x,w)[| < B(llxll, 1) + y([lu

By (4), for any y € X and any ¢ > 0 it holds that [|y|| < |yl5 57+
¢. Furthermore, for y ¢ B.(0) it holds that:

w)+ec. (23)

. C
Yz = ze%”y 2zl <ly— Myll = [yl —e.

Now we infer from (23) for ¢ (¢,x,u) ¢ B.(0) that

19(t,x,u) 5.0 < BIxlg, o7 +0.0) +¥(llullz)- (24

Otherwise, if @(¢,x,u) € B.(0), then \(])(t,x,u)|m: 0 and
(24) also holds. Thus X is CUAG w.r.t. B.(0) (however, B.(0)
does not have to be O-invariant). According to Proposition III.7
there is a bounded O-invariant set .2/ so that £ is CUAG w.r.t.
f8

(i) = (iii). Clear.

(iii) = (1). Proposition II1.7 implies that there is a bounded
set o7 C X so that ¥ is CUAG w.r.t. o Proposition II1.5 shows
ISpS of X. O

IV. SPECIAL CLASSES OF SYSTEMS

One of the criteria for ISpS, shown in Theorem III.1, states
that ISpS of a control system X is equivalent to existence of a
O-invariant set .7 so that X has a CUAG property w.r.t. <. It is
natural to ask whether an ISS property (which is stronger than
CUAQG) holds w.r.t. this set. This problem can be approached
using the following result:

Proposition IV.1. Let o/ C X be bounded. A control system
Y is ISS w.rit. o if and only if ¥ is CUAG w.rt. of and < is
a robustly O-invariant set.

Proof. This result has been shown in [19, Theorem 5] for
o/ ={0}. In view of a characterization of the CUAG property
in Proposition II1.4. The proof for general bounded sets .o is
completely analogous and hence is omitted. O

However, the proof or disproof of robust O-invariance of the
constructed O-invariant set .2/ is in general a difficult task. In
Section IV-A we show that this is possible for systems with
a Lipschitz continuous flow under certain restrictions on the
input space. The notion of s-invariance and the corresponding
Lemma I'V.3 help us heavily on this way. Next, in Section IV-B
above criteria will be applied to semilinear evolution equations
in Banach spaces. Finally, Section IV-C is devoted to ODE
systems. In this case we can strengthen the results even further,
due to the fact that ULIM and LIM notions coincide for ODE
systems.
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A. Systems with Lipschitz continuous flows

Definition IV.2. The flow of a control system X is called
Lipschitz continuous on compact intervals (for uniformly
bounded inputs), if for any 4 > 0 and any r > 0 there is L >0
s.t. for any x,y € B,, all u € B,4 and all € [0, 4] it holds that

19 (t,x,u) = ¢ (t,y,u) || < Lllx—yl|. (25)

Many classes of systems possess flows which are Lips-
chitz continuous on compact intervals. Semilinear evolution
equations and ODEs with Lipschitz continuous nonlinearities,
which are considered next, are particular of examples of such
kind of systems. Lipschitz continuity of the flow helps to prove
such significant results as e.g. converse Lyapunov theorems for
infinite-dimensional systems [34, Section 3.4], [22].

Lemma IV.3. Let a control system ¥ be given and let of C X
be a bounded s-invariant set, for a certain s > 0. If the flow
of X is Lipschitz continuous on compact intervals, then < is
a robustly s-invariant set.

Proof. Let </ be a bounded s-invariant set, for a certain s > 0.

Pick any € >0, h > 0 and set r:= ||&/|| + 1. For this r
there is a L = L(2r, ) so that for any x,y € Bs,, u € By 4, and
t € [0,A] it holds that

10 (t,x,u) = ¢ (1, y,u)[| < L|lx—yl.

Set 8 :=min{%,r} and pick any x € Bs(«) (hence [|x|| <
||| + & < 2r). Then there is a y € o/ ||x—y|| < & and the
following estimates hold for 7 € [0,4] and u € Byyin(,,s},2, (note
that ¢ (¢,y,u) € &7 due to s-invariance of 27):

|¢(t’xa”)|£7 :zier?pf{Hqﬁ(t,x,u)fZII < Hd)(tvxvu)fq)(ta)@”)“

<Lllx—y]
<e.

This shows robust invariance of <. O

Lemma IV4. Let X be a control system. Let also for each
u,v € % and for all t > 0 the concatenation

T ORI SR O
v(s—t), otherwise,
of u and v at time t satisfy the property

Iwllz < max{{|ullz, |[v]|2 }- (26)

Then for any € >0 and any y € ., the space g y is y! (5)-
invariant.

Proof. Pick any y € @y and any v € By_l(%%%. Then there
are certain s > 0, x € B¢(«/) and u € B}H(%)% so that y =
¢ (s,x,u). Due to cocycle property it holds for each ¢ > 0 that

O(t,y,v) = O(t +5,x,w), (27)
where w is a concatenation of u and v at time s.
In view of the assumption (26) it holds that [|w||4 <y~ (%),

and hence ¢(t +s,x,w) € @ y due to the definition of .27 y.
Hence ¢(t,y,v) € ¢ . O
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Remark IV.5. An additional assumption on the input space %
in Lemma IV.4 restricts the class of inputs. In particular, the
inputs from L, spaces or from Sobolev spaces do not fulfill it.
However, the spaces of continuous, piecewise continuous and
L.. functions do satisfy it (w.r.t. the natural sup or esssup-norm
respectively).

Finally, we are able to characterize ISpS in terms of ISS:

Theorem IV.6. Let X = (X, % ,¢) be a control system, ¢ be
Lipschitz continuous on compact time intervals and the input
space U satisfy the assumptions of Lemma IV.4. Then:

Y is ISpS & For any s > 0 there is a bounded
s-invariant set of C X: ¥ is ISS w.rt. of

Proof. ”<". Since ¥ is CUAG w.t. </, Proposition IIL.5
shows that X is ISpS.

”=". According to Theorem III.1 and Proposition III.7,
ISpS of ¥ with a corresponding gain y € J#, implies that
for each € > 0 the system X is CUAG w.r.t. o7 y. Since the
assumptions of Lemma IV.4 hold, <7 , is a y~!(%)-invariant
bounded set. Now Lemma IV.3 shows that 2% y is a robustly
y! (§)-invariant bounded set. Finally, Proposition IV.1 proves
that ¥ is ISS w.r.t. @ ;. Since € > 0 can be chosen arbitrarily,
and since y € %z, then y~!( %) can be made arbitrarily large
by choosing sufficiently large €. [

B. Semilinear evolution equations

Here we specify the results obtained previously to semilin-
ear evolution equations in Banach spaces.

Let X be a Banach space and A be the generator of a strongly
continuous semigroup 7 of bounded linear operators on X and
let f: X xU — X. Consider the system

(t) = Ax(t) + £(x(t), u(t)).

We study mild solutions of (28), i.e. solutions x: [0,7] = X
of the integral equation

x(t) =T ()x(0)+ /Ot T(t—s)f(x(s),u(s))ds, (29)

belonging to the space of continuous functions C([0,7],X) for
some T > 0.

We assume that the set of input values U is a normed
linear space and that the input functions belong to the space
% = PC(R4,U) of globally bounded, piecewise continuous
functions u : Ry — U, which are right continuous. The norm
of uc % is given by ||u|4 := sup,~¢||lu(?)||v-

We assume that the solution of (28) exists and is unique
on Ry (i.e. (28) is forward complete). ISpS of (28) can be
characterized as follows:

(28)

Proposition IV.7. Consider a BRS system (28) satisfying

e f:X XU — X is Lipschitz continuous on bounded subsets
of X.

o f(x,-) is continuous for all x € X.

The following statements are equivalent:
(i) (28) is ISpS
(ii) For any s > 0 there is a bounded s-invariant set &/ C X:

(28) is ISS w.rt. <.
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(iii) There is a bounded set o/ C X: (28) is ULIM w.r.t. <.

Proof. According to [19, Section VII], a BRS system (28)
satisfying assumptions of the proposition has a flow which
is Lipschitz continuous on compact intervals (in [19, Section
VII] a stronger assumption on f has been imposed, but the
assertion which we need here can be shown without these
further requirements). The input space % := PC(R,U) sat-
isfies the assumptions of Lemma IV.4. Now the application of
Theorems III.1, IV.6 proves the claim of the proposition. [

C. Ordinary differential equations
Finally, we turn our attention to the ISpS theory of ODEs

x= f(x,u), (30)

where f : R" x R" — R" is locally Lipschitz continuous
w.rt. the first argument and inputs u belong to the set
U = Lo(R4,R™) of Lebesgue measurable globally essen-
tially bounded functions with values in R™.

In [14, Proposition V1.3] Sontag and Wang have shown the
following result:

Proposition IV.8. Let (30) be forward complete. The following
statements are equivalent:

(i) (30) is ISpS
(ii) (30) has compact ISS property, i.e. there is a compact

O-invariant set &/ C R" so that (30) is UAG w.rt. <.
(iii) There is a compact set o/ C R": (30) is ISS w.r.t. .

Note that in item (iii) of Proposition IV.8 the set </
is automatically O-invariant, as (30) is ISS w.rt. «/. The
equivalence between items (ii) and (iii) was not explicitly
stated in [14, Proposition VI1.3], but directly follows from [14,
Theorem 1].

The characterizations given in Proposition IV.8 show that an
ISpS system possesses a stronger (ISS) property, but relative
to a larger set. Next we show that the results developed in the
previous sections, provide us with a criterion of ISpS in terms
of a weaker limit property.

The following result has been shown in [19] for o/ = {0}
on the basis of [14, Corollary III.3]. The proof for general
bounded .o/ is analogous and thus omitted.

Proposition IV.9. Consider a system (30) with % as above.
Let of C R" be any bounded set. Then ¥ is ULIM w.r.t. & if
and only if ¥ is LIM w.r.t. <.

The main result of this section is:

Corollary IV.10. Let (30) be forward complete. The following
statements are equivalent:

(i) (30) is ISpS
(ii) For any s > 0 there is a compact s-invariant set of C R":
(30) is ISS w.rt. .
(iii) There is a bounded set o/ C R": (30) is LIM w.r.t. <.

Proof. According to [31, Proposition 5.1], for (30) forward
completeness is equivalent to the BRS property.

(i) = (ii). By [31, Proposition 5.5], the flow of (30) is
Lipschitz continuous on compact subsets. The input space
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U = Lo(R;,R™) satisfies the assumptions of Lemma IV.4.
Application of Theorem IV.6 proves that for any s > O there
is a bounded s-invariant set ./ C R": (30) is ISS w.r.t. .&/.

Since f is Lipschitz continuous w.r.t. the first argument, the
solutions of (30) depend continuously on initial data. Hence
o/ is again s-invariant (as a closure of an s-invariant set). Since
o/ is bounded, .7 is compact.

(i) = (iii). Clear.

(iii) = (i). Follows by Proposition IV.9 and Theorem III.1.

O

Remark IV.11. The equivalence between items (i) and (ii)
can be seen as a slight strengthening of Proposition IV.8. The
equivalence between items (i) and (iii) is novel.

V. CONCLUSION

For a broad class of infinite-dimensional systems, we have
proved criteria for practical ISS in terms of uniform limit
property and in terms of ISS. The characterization of ISpS in
terms of the limit property is novel already for ODE systems.

REFERENCES

[1]1 E.D. Sontag, “Smooth stabilization implies coprime factorization,” IEEE
Transactions on Automatic Control, vol. 34, no. 4, pp. 435—443, 1989.

[2] R. A. Freeman and P. V. Kokotovic, Robust Nonlinear Control Design:
State-Space and Lyapunov Techniques. Boston, MA: Birkhduser, 2008.

[3] M. Arcak and P. Kokotovié, “Nonlinear observers: a circle criterion
design and robustness analysis,” Automatica, vol. 37, no. 12, pp. 1923—
1930, 2001.

[4] Z.-P. Jiang, A. R. Teel, and L. Praly, “Small-gain theorem for ISS sys-
tems and applications,” Mathematics of Control, Signals, and Systems,
vol. 7, no. 2, pp. 95-120, 1994.

[5]1 S. Dashkovskiy, B. S. Riiffer, and F. R. Wirth, “An ISS small gain
theorem for general networks,” Mathematics of Control, Signals, and
Systems, vol. 19, no. 2, pp. 93-122, 2007.

[6] C.-R. Zhao and X.-J. Xie, “Output feedback stabilization using small-
gain method and reduced-order observer for stochastic nonlinear sys-
tems,” IEEE Transactions on Automatic Control, vol. 58, no. 2, pp.
523-529, 2013.

[7]1 Y. Sharon and D. Liberzon, “Input to state stabilizing controller for
systems with coarse quantization,” IEEE Transactions on Automatic
Control, vol. 57, no. 4, pp. 830-844, 2012.

[8] B.Jayawardhana, H. Logemann, and E. P. Ryan, “Input-to-State Stability
of Differential Inclusions with Applications to Hysteretic and Quantized
Feedback Systems,” SIAM Journal on Control and Optimization, vol. 48,
no. 2, pp. 1031-1054, 2009.

[91 N. Noroozi, A. Khayatian, and H. R. Karimi, “Semiglobal practical

integral input-to-state stability for a family of parameterized discrete-

time interconnected systems with application to sampled-data control

systems,” Nonlinear Analysis: Hybrid Systems, vol. 17, pp. 10-24, 2015.

Z.-P. Jiang, I. M. Y. Mareels, and Y. Wang, “A Lyapunov formulation

of the nonlinear small-gain theorem for interconnected ISS systems,”

Automatica, vol. 32, no. 8, pp. 1211-1215, 1996.

V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Practical stability

of nonlinear systems. World Scientific, 1990.

B. Jayawardhana, H. Logemann, and E. P. Ryan, “The circle criterion

and input-to-state stability,” IEEE Control Systems Magazine, vol. 31,

no. 4, pp. 32-67, 2011.

E. D. Sontag and Y. Wang, “On characterizations of the input-to-state

stability property,” Systems & Control Letters, vol. 24, no. 5, pp. 351-

359, 1995.

——, “New characterizations of input-to-state stability,” IEEE Transac-

tions on Automatic Control, vol. 41, no. 9, pp. 1283-1294, 1996.

C. Cai and A. Teel, “Characterizations of input-to-state stability for

hybrid systems,” Systems & Control Letters, vol. 58, no. 1, pp. 47-53,

2009.

S. Dashkovskiy and M. Kosmykov, “Input-to-state stability of intercon-

nected hybrid systems,” Automatica, vol. 49, no. 4, pp. 1068—-1074, 2013.

[10]

(11]

(12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

[31]

[32]
(33]

[34]

http://dx.doi.org/10.1109/TAC.2018.2824983

A. R. Teel, “Connections between Razumikhin-type theorems and the
ISS nonlinear small-gain theorem,” IEEE Transactions on Automatic
Control, vol. 43, no. 7, pp. 960-964, 1998.

S. Dashkovskiy, M. Kosmykov, A. Mironchenko, and L. Naujok, “Sta-
bility of interconnected impulsive systems with and without time delays,
using Lyapunov methods,” Nonlinear Analysis: Hybrid Systems, vol. 6,
no. 3, pp. 899-915, 2012.

A. Mironchenko and F. Wirth, “Characterizations of input-to-state sta-
bility for infinite-dimensional systems,” Accepted to IEEE Transactions
on Automatic Control, 2017, doi: 10.1109/TAC.2017.2756341.

E. D. Sontag, “Comments on integral variants of ISS,)” Systems &
Control Letters, vol. 34, no. 1-2, pp. 93-100, 1998.

A. Mironchenko, “Local input-to-state stability: Characterizations and
counterexamples,” Systems & Control Letters, vol. 87, pp. 23-28, 2016.
A. Mironchenko and F. Wirth, “Non-coercive Lyapunov functions for
infinite-dimensional systems,” arxiv.org/abs/1612.06575, 2017, submit-
ted to Journal of Differential Equations.

A. Mironchenko, “Uniform weak attractivity and criteria for practical
global asymptotic stability,” Systems & Control Letters, vol. 105, pp.
92-99, 2017.

A. Mironchenko and H. Ito, “Construction of Lyapunov Functions for
Interconnected Parabolic Systems: An iISS Approach,” SIAM Journal
on Control and Optimization, vol. 53, no. 6, pp. 3364-3382, 2015.

I. Karafyllis and M. Kirstic, “ISS in Different Norms for 1-D Parabolic
PDEs With Boundary Disturbances,” SIAM Journal on Control and
Optimization, vol. 55, no. 3, pp. 1716-1751, 2017.

C. Prieur and F. Mazenc, “ISS-Lyapunov functions for time-varying
hyperbolic systems of balance laws,” Mathematics of Control, Signals,
and Systems, vol. 24, no. 1-2, pp. 111-134, 2012.

B. Jacob, R. Nabiullin, J. R. Partington, and F. L. Schwenninger,
“Infinite-Dimensional Input-to-State Stability and Orlicz Spaces,” SIAM
Journal on Control and Optimization, vol. 56, no. 2, pp. 868-889, 2018.
F. Mazenc and C. Prieur, “Strict Lyapunov functions for semilinear
parabolic partial differential equations,” Mathematical Control and Re-
lated Fields, vol. 1, no. 2, pp. 231-250, 2011.

B. Jacob, F. Schwenninger, and H. Zwart, “On Continuity of Solu-
tions for Parabolic Control Systems and Input-to-State Stability,” arXiv
preprint arXiv:1709.04261, 2017.

A. Mironchenko, I. Karafyllis, and M. Krstic, “Monotonicity
Methods for Input-to-State Stability of Nonlinear Parabolic PDEs
with Boundary Disturbances,” Submitted. Preprint is available at
https://arxiv.org/abs/1706.07224, 2017.

Y. Lin, E. D. Sontag, and Y. Wang, “A smooth converse Lyapunov
theorem for robust stability,” SIAM Journal on Control and Optimization,
vol. 34, no. 1, pp. 124-160, 1996.

L. Griine, Asymptotic behavior of dynamical and control systems under
perturbation and discretization. Berlin: Springer-Verlag, 2002.

N. P. Bhatia and G. P. Szego, Stability theory of dynamical systems.
Springer Science & Business Media, 2002.

I. Karafyllis and Z.-P. Jiang, Stability and stabilization of nonlinear
systems. London: Springer-Verlag, 2011.

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



