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Abstract. We prove a small-gain theorem for interconnections of n nonlinear heterogeneous
input-to-state stable control systems of a general nature, covering partial, delay and ordinary differ-
ential equations. Furthermore, for the same class of control systems we derive small-gain theorems
for asymptotic gain, uniform global stability and weak input-to-state stability properties. We show
that our technique is applicable for different formulations of ISS property (summation, maximum,
semimaximum) and discuss tightness of achieved small-gain theorems. Finally, we introduce varia-
tions of asymptotic gain and limit properties, which are particularly useful for small-gain arguments
and characterize ISS in terms of these notions.
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1. Introduction. The notion of input-to-state stability (ISS), introduced in []
for ordinary differential equations (ODEs), has become a backbone for much of non-
linear control theory, and is currently a well developed theory with a firm theoretical
basis and such powerful tools for ISS analysis, as Lyapunov and small-gain methods.
Broad applications of ISS theory include robust stabilization of nonlinear systems [],
design of nonlinear observers [], analysis of large-scale networks [,,], etc.

The impact of finite-dimensional ISS theory and the need of proper tools for ro-
bust stability analysis of distributed parameter systems resulted in generalizations
of ISS concepts to broad classes of infinite-dimensional systems, including partial
differential equations (PDEs) with distributed and boundary controls, nonlinear evo-
lution equations in Banach spaces with bounded and unbounded input operators, etc.
[,,,,,,,,,,,].

Techniques developed within infinite-dimensional ISS theory include characteri-
zations of ISS and ISS-like properties in terms of weaker stability concepts [,],
[,], constructions of ISS Lyapunov functions for PDEs with distributed and bound-
ary controls [,,,,,], non-coercive ISS Lyapunov functions [,], efficient
methods for study of boundary control systems [,,,,], etc.

One of the cornerstones of the mathematical control theory is the analysis of
interconnected systems. Large-scale nonlinear systems can be very complex, so that a
direct stability analysis of such systems is seldom possible. Small-gain theorems, which
are one of the pillars on which the ISS theory stands, make it possible to overcome
this obstacle. These theorems guarantee input-to-state stability of an interconnected
system, provided all subsystems are ISS and the interconnection structure, described
by gains, satisfies the small-gain condition.

1.1. Existing ISS small-gain results. There are two kinds of nonlinear small-
gain theorems: theorems in terms of trajectories and in terms of Lyapunov functions.
In small-gain theorems in the trajectory formulation one assumes that each subsys-
tem is ISS both w.r.t. external inputs and internal inputs from other subsystems, and
the so-called internal gains of subsystems characterizing the influence of subsystems
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on each other are known. The small-gain theorem states that the feedback intercon-
nection is ISS provided the gains satisfy the small-gain condition. First small-gain
theorems of this type have been developed in [] for feedback couplings of two ODE
systems and in [] for couplings of n ODE systems.

In Lyapunov small-gain theorems it is assumed that all subsystems are ISS w.r.t.
external and internal inputs and the ISS Lyapunov functions for subsystems are given
together with the corresponding Lyapunov gains. If Lyapunov gains satisfy the small-
gain condition, then the whole interconnection is ISS and moreover, an ISS Lyapunov
function for the overall system can be constructed. For couplings of 2 systems such
theorems have been shown in [] and this result has been extended to couplings of
n nonlinear ODE systems in [].

As was shown in [], ISS small-gain theorems in a Lyapunov formulation can
be extended to interconnections of n infinite-dimensional systems without radical
changes in the formulation and proof technique. Generalization of integral ISS small-
gain theorems is more difficult primarily due to the fact that the state spaces for
subsystems should be carefully chosen (see []), although the formulation of the
small-gain theorem itself remains similar to the ODE case. ISS small-gain theorems
in terms of vector Lyapunov functions have been reported in [,].

The case of trajectory-based infinite-dimensional small-gain theorems for cou-
plings of n > 2 systems is significantly more complicated since the proof of such theo-
rems in [] is based on the fundamental result that ISS of ODE systems is equivalent
to uniform global stability (UGS) combined with the asymptotic gain (AG) property
shown in [,]. Such a characterization is not valid for infinite-dimensional systems,
as argued in [,] which makes the proof of [] not applicable to infinite-dimensional
systems without substantial modifications.

In particular, considerable attention has been devoted to small-gain theorems in
terms of trajectories for time-delay systems. To the knowledge of the author, the first
attempt to obtain ISS and, more generally, IOS (input-to-output stability) small-
gain results for time-delay systems has been made in []. In this paper small-gain
theorems for couplings of 2 time-delay systems possessing UGS and AG properties
have been derived, but no small-gain theorem for ISS property. As AG ∧ UGS is
(probably) weaker than ISS for time-delay systems, the ISS small-gain theorem has
not been obtained in this work. Small-gain theorems for couplings of n time-delay
systems with AG ∧ UGS properties have been obtained in [] and [].

The first ISS small-gain theorems, applicable for time-delay systems have been
achieved in [], where the small-gain theorems in terms of trajectories (in maximum
formulation) have been shown for couplings of two control systems of a rather general
nature, covering in particular time-delay systems.

The obstacle that ISS is (at least potentially) not equivalent to AG ∧ UGS, was
overcome in [] where ISS small-gain theorems for couplings of n ≥ 2 time-delay
systems have been obtained by using a Razumikhin-type argument, motivated by
[]. In this approach the delayed state in the right hand side of a time-delay system
is treated as an input to the system, which makes the time-delay system a delay-free
system with an additional input. However, the transformation of time-delay systems
to the delay-free form is not always straightforward.

Recently in [] the small-gain theorems for couplings of n input-to-output stable
(IOS) evolution equations in Banach spaces have been derived. As a special case of
these results, the authors obtain a small-gain theorem for networks of n ISS systems
in the maximum formulation. Application of small-gain theorems for stability anal-
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ysis of coupled parabolic-hyperbolic PDEs has been performed in []. Small-gain
based boundary feedback design for global exponential stabilization of 1-D semilinear
parabolic PDEs has been proposed in [].

1.2. Contribution. Our main results are ISS small-gain theorems (in summa-
tion, semimaximum and maximum formulation) for feedback interconnections of n
nonlinear heterogeneous control systems whose components belong to a broad class of
control systems covering PDEs, time-delay systems, ODE etc. Furthermore, for the
same class of control systems we show small-gain theorems for AG, UGS and weak
ISS properties.

For the description of interconnections of control systems we adopt an approach
described in []. Furthermore, in this paper we use a variation of a uniform asymp-
totic gain (UAG) property, which we call bounded input uniform asymptotic gain
(bUAG) property. Although it was used so far not so often as the standard UAG
property (but see e.g. [], [, Proposition 1.4.3.]), it is more flexible in use and in
most cases as powerful as the standard UAG property.

The ISS small-gain theorem for the summation formulation of the ISS property
(Theorem) is achieved in 3 steps:

(i) We derive UGS property of the interconnection (which is the UGS small-gain
Theorem) using the methods developed in [].

(ii) We show that the interconnection satisfies bUAG property (the main technical
step).

(iii) We show that UGS ∧ bUAG is equivalent to ISS, which concludes the proof.
Here we base ourselves on characterizations of ISS obtained in [].

Using similar steps we prove in Section ISS small-gain theorems in semimaximum
(Theorem) and maximum (Corollary) formulations.

Motivated by the notion of strong input-to-state stability (sISS), introduced in
[] and studied in [], [], in [,] the concept of weak input-to-state stability
(wISS) has been introduced and investigated, in particular, in the context of robust
stabilization of port-Hamiltonian systems, see []. The system is called weak ISS, if
it is uniformly globally stable and has an asymptotic gain property. In Section we
derive a small-gain result for a weak ISS property.

As asymptotic gain properties for bounded inputs were very useful for the proof of
small-gain theorems, it is natural to surmise that they can be useful in other contexts
as well. In Section we derive several new characterizations of ISS using properties
of this kind.

1.3. Relation to previous research. This paper is motivated by the ISS small-
gain theorems for networks of n ∈ N ODE systems, reported in [], and recovers these
results in a special case of ODE systems.

As a particular application of our general small-gain theorems one can obtain
novel small-gain results for couplings of n nonlinear time-delay systems. In contrast
to [,,], we obtain not only UGS ∧ AG (i.e. weak ISS) small-gain results,
but also ISS small-gain theorems. And in contrast to ISS small-gain theorems from
[], our approach is not time-delay specific, does not require a transformation of
retarded systems into delay-free ones and is applicable to the sum formulation of the
ISS property.

In [] small-gain theorems for couplings of n evolution equations in Banach spaces
with Lipschitz continuous nonlinearities have been derived, by using a rather different
proof technique, which is applicable if the small-gain property is formulated in the
so-called maximization formulation. Instead, we focus in this work on the summation
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and semimaximum formulations of the ISS property and thus the developments in []
are complementary to this paper.

The approach which we use in this paper is very flexible as it is valid for a broad
class of infinite-dimensional systems and applies to many different formulations of the
ISS property (and not only for the maximum formulation). In the case of summation
and semimaximum formulations our small-gain theorems are also tight, as shown in
Section. However, for the maximum formulation of the ISS property the results
in [] are stronger.

Finally, we note that a key ingredient in the proof of the small-gain theorems in
this paper are the characterizations of ISS of infinite-dimensional systems in terms of
weaker stability properties, derived in []. These characterizations have been already
useful in several further contexts as the non-coercive Lyapunov function theory, see
[,] and the characterization of the practical ISS property []. We hope that
refined and more flexible versions of these characterizations derived in Section will
find further applications within the infinite-dimensional ISS theory.

1.4. Notation. In the following R+ := [0,∞). For arbitrary x, y ∈ Rn define
the relation ”≥” on Rn by: x ≥ y ⇔ xi ≥ yi, ∀i = 1, . . . , n.

By ” 6≥” we understand the logical negation of ”≥”, that is x 6≥ y iff ∃i: xi < yi.
Further define Rn+ := {x ∈ Rn : x ≥ 0}.
For a function v : R+ → X, where X is a certain set, we define its restriction to

the interval [s1, s2] by

v[s1,s2](t) :=

{
v(t) if t ∈ [s1, s2],

0 else.

Also we will use the following classes of comparison functions.

K := {γ : R+ → R+ : γ is continuous and strictly increasing, γ(0) = 0}
K∞ := {γ ∈ K : γ is unbounded}
L :=

{
γ : R+ → R+ : γ is continuous and decreasing with lim

t→∞
γ(t) = 0

}
KL :=

{
β : R2

+ → R+ : β(·, t) ∈ K, ∀t ≥ 0, β(r, ·) ∈ L, ∀r > 0
}

2. Problem formulation.

2.1. Definition of control systems. We define the concept of a (time-invariant)
system in the following way:

Definition 2.1. Consider the triple Σ = (X,U , φ) consisting of
(i) A normed linear space (X, ‖ · ‖X), called the state space, endowed with the norm
‖ · ‖X .

(ii) A set of input values U , which is a nonempty subset of a certain normed linear
space.

(iii) A space of inputs U ⊂ {f : R+ → U} endowed with a norm ‖ · ‖U which satisfies
the following two axioms:
The axiom of shift invariance: for all u ∈ U and all τ ≥ 0 the time shift u(·+ τ)
belongs to U with ‖u‖U ≥ ‖u(·+ τ)‖U .
The axiom of concatenation: for all u1, u2 ∈ U and for all t > 0 the concatena-
tion of u1 and u2 at time t

(2.1) u(τ) :=

{
u1(τ), if τ ∈ [0, t],

u2(τ − t), otherwise,
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belongs to U .
(iv) A map φ : Dφ → X, Dφ ⊆ R+ ×X × U (called transition map), so that for all

(x, u) ∈ X × U there is a t > 0 so that [0, t]× {(x, u)} ⊂ Dφ.
The triple Σ is called a (forward complete) dynamical system, if the following proper-
ties hold:
(Σ1) The identity property: for every (x, u) ∈ X × U it holds that φ(0, x, u) = x.
(Σ2) Causality: for every (t, x, u) ∈ R+×X×U , for every ũ ∈ U , such that u(s) = ũ(s)

for all s ∈ [0, t] it holds that φ(t, x, u) = φ(t, x, ũ).
(Σ3) Continuity: for each (x, u) ∈ X × U the map t 7→ φ(t, x, u) is continuous.
(Σ4) The cocycle property: for all x ∈ X, u ∈ U , for all t, h ≥ 0 so that [0, t + h] ×

{(x, u)} ⊂ Dφ, we have φ(h, φ(t, x, u), u(t+ ·)) = φ(t+ h, x, u).
This class of systems encompasses control systems generated by ordinary dif-

ferential equations (ODEs), switched systems, time-delay systems, many classes of
partial differential equations (PDEs), important classes of boundary control systems
and many other systems.

Next we define several important properties of control systems:
Definition 2.2. We say that a control system (as introduced in Definition

is forward complete (FC), if Dφ = R+ ×X ×U , that is for every (x, u) ∈ X ×U and
for all t ≥ 0 the value φ(t, x, u) ∈ X is well-defined.

Remark 2.3. The class of forward complete control systems considered in this
paper is precisely the class of control systems considered in [], where forward com-
pleteness axiom was a part of a definition of a control system. Hence the results
obtained in [] are applicable to forward complete systems considered in this paper.

An important property of ordinary differential equations with Lipschitz continu-
ous right-hand sides states that if the solution stays bounded over [0, t), then it can be
prolonged to [0, t+ ε) for a certain ε > 0. Similar properties have evolution equations
in Banach spaces with bounded control operators and Lipschitz continuous right hand
sides [, Theorem 4.3.4] and many other classes of systems [, Chapter 1]. The next
property, adopted from [, Definition 1.4] formalizes this behavior for general control
systems.

Definition 2.4. We say that a system Σ satisfies the boundedness-implies-
continuation (BIC) property if for each (x, u) ∈ X × U , there exists tmax ∈ (0,+∞],
called a maximal existence time, such that [0, tmax) × {(x, u)} ⊂ Dφ and for all
t ≥ tmax, it holds that (t, x, u) /∈ Dφ. In addition, if tmax < +∞, then for every
M > 0, there exists t ∈ [0, tmax) with ‖φ(t, x, u)‖X > M .

2.2. Interconnections of control systems. Let (Xi, ‖ · ‖Xi), i = 1, . . . , n
be normed linear spaces endowed with the corresponding norms. Define for each
i = 1, . . . , n the normed linear space

X6=i := X1 × . . .×Xi−1 ×Xi+1 × . . .×Xn, ‖x‖X 6=i
:=

√√√√ n∑
j=1, j 6=i

‖xj‖2Xj
.(2.2)

Let control systems Σi := (Xi, PC(R+, X6=i) × U , φ̄i) be given and assume that
each Σi possesses a BIC property. We call X6=i the space of internal input values,
PC(R+, X6=i) the space of internal inputs. The norm on PC(R+, X6=i)×U we define
as

‖(v, u)‖PC(R+,X 6=i)×U :=

√∑
j 6=i

‖vj‖2PC(R+,Xj)
+ ‖u‖2U .(2.3)
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Define also the normed linear space

X = X1 × . . .×Xn, ‖x‖X :=

√√√√ n∑
i=1

‖xi‖2Xi
,(2.4)

and assume that there is a map φ = (φ1, . . . , φn) : Dφ → X, defined over a certain
domain Dφ ⊆ R+ ×X ×U so that for each x = (x1, x2, . . . , xn) ∈ X, each u ∈ U and
all t ∈ R+ so that (t, x, u) ∈ Dφ and for every i = 1, . . . , n, it holds that

φi(t, xi, u) = φ̄i
(
t, xi, (vi, u)

)
,(2.5)

where

vi(t) = (φ1(t, x, u), . . . , φi−1(t, x, u), φi+1(t, x, u), . . . , φn(t, x, u)).

Assume further that Σ := (X,U , φ) is a control system with the state space X, input
space U and with a BIC property. Then Σ is called a (feedback) interconnection of
systems Σ1, . . . ,Σn.

In other words, condition () means that if the modes φj(·, x, u), j 6= i of the
system Σ will be sent to Σi as the internal inputs (together with an external input
u), and the initial state will be chosen as xi (the i-th mode of x), then the resulting
trajectory of the system Σi, which is φ̄i(·, xi, v, u) will coincide with the trajectory of
the i-th mode of the system Σ on the interval of existence of φi.

Note that the trajectory of each Σi depends continuously on time due to the
continuity axiom. However, as the space of continuous functions does not satisfy the
concatenation property, we enlarge it to include the piecewise continuous functions.
This motivates the choice of the space PC(R+, X6=i) × U as the input space for the
i-th subsystem.

Remark 2.5. This definition of feedback interconnections, which we adopted
from [, Definition 3.3], does not depend on a particular type of control systems
which are coupled, and is applicable to large-scale systems, consisting of heterogeneous
components as PDEs, time-delay systems, ODE systems etc. The definition also
applies to different kinds of interconnections, e.g. both for in-domain and boundary
interconnections of PDE systems.

One of the key problems is to check whether the interconnection is well-defined,
i.e. whether the solution exists in a certain sense. This problem can be very hard,
especially in case of boundary interconnections of PDE systems. In our definition of
the interconnection we assume that the interconnection is well-defined, and thus we
avoid the well-posedness problem and concentrate our attention on stability analysis
of coupled systems. �

Next we show how the couplings of ODEs and of evolution equations in Banach
spaces can be represented in our approach. Many further classes of systems can be
treated in a similar way.

2.3. Example: interconnections of ODE systems. Consider the intercon-
nected systems of the following form

(2.6)

{
ẋi = fi(x1, . . . , xn, u),
i = 1, . . . , n,

Here we assume that the state space of the i-th subsystem is Xi := Rpi endowed
with the Euclidean norm. Define N := p1 + . . . + pn. Then the state space of the
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whole system, defined by () is X := RN , endowed with the Euclidean norm. We
assume that inputs belong to the space U := L∞(R+,Rm). Assuming that f is
Lipschitz continuous w.r.t. the state, for each initial condition and for each external
input u ∈ U there is a unique absolutely continuous (mild) solution of () and
() is a well-defined control system, which is an interconnection of the systems Σ i,
i = 1, . . . , n.

Defining for xi ∈ Rpi , i = 1, . . . , n the state x = (x1, . . . , xn)T , f(x, u) =
(f1(x, u), . . . , fn(x, u))T , we can rewrite the coupled system in the form

(2.7) ẋ(t) = f(x(t), u(t)), u(t) ∈ U.

2.4. Example: interconnections of evolution equations in Banach spaces.
Consider a system of the following form

(2.8)

{
ẋi = Aixi + fi(x1, . . . , xn, u),
i = 1, . . . , n,

where the state space of the i-th subsystem Xi is a Banach space and Ai with the
domain of definition D(Ai) is the generator of a C0-semigroup on Xi, i = 1, . . . , n.
In the sequel we assume that the set of input values U is a normed linear space and
that the input functions belong to the space U := PC(R+, U) of globally bounded,
piecewise continuous functions u : R+ → U , which are right continuous. The norm of
u ∈ U is given by ‖u‖U := supt≥0 ‖u(t)‖U .

Define the state space X of the whole system () by (). We choose further
the input space to the i-th subsystem as ().

For xi ∈ Xi, i = 1, . . . , n define x = (x1, . . . , xn)T , f(x, u) = (f1(x, u), . . . , fn(x, u))T .
By A we denote the diagonal operator A := diag(A1, . . . , An), i.e.:

A =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . An


Domain of definition of A is given by D(A) = D(A1)× . . .×D(An). It is well-known
that A is the generator of a C0-semigroup on X.

With this notation the coupled system () takes the form

(2.9) ẋ(t) = Ax(t) + f(x(t), u(t)), u(t) ∈ U.

Assuming that f is Lipschitz continuous w.r.t. x guarantees that the mild solutions
of () exists and is unique for every initial condition and for any admissible input.
Here mild solutions x : [0, τ ]→ X are the solutions of the integral equation

x(t) = T (t)x(0) +

∫ t

0

T (t− s)f(x(s), u(s))ds,(2.10)

belonging to the space of continuous functions C([0, τ ], X) for some τ > 0.
Under these assumptions the system () can be seen as a well-defined intercon-

nection of the systems Σi, i = 1, . . . , n, and each Σi is a well-defined system in the
sense of Definition. Moreover, by a variation of [, Theorem 4.3.4] one can show
that () possesses the BIC property.
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3. Stability notions.

3.1. Stability notions of single control systems. The main concept in this
paper is:

Definition 3.1. A system Σ = (X,U , φ) is called (uniformly) input-to-state
stable (ISS), if there exist β ∈ KL and γ ∈ K such that for all (t, x, u) ∈ Dφ it holds
that

(3.1) ‖φ(t, x, u)‖X ≤ β(‖x‖X , t) + γ(‖u‖U ).

Another important definition is
Definition 3.2. A system Σ = (X,U , φ) is called uniformly globally asymptoti-

cally stable (0-UGAS) for a zero input, if there exist β ∈ KL and γ ∈ K such that for
all (t, x, 0) ∈ Dφ it holds that

(3.2) ‖φ(t, x, 0)‖X ≤ β(‖x‖X , t).

Clearly, ISS implies 0-UGAS. Another important property implied by ISS is
Definition 3.3. A system Σ = (X,U , φ) is called uniformly globally stable

(UGS), if there exist σ ∈ K∞, γ ∈ K∞ ∪ {0} such that for all (t, x, u) ∈ Dφ the
following holds:

(3.3) ‖φ(t, x, u)‖X ≤ σ(‖x‖X) + γ(‖u‖U ).

A local counterpart of the UGS property is
Definition 3.4. A system Σ = (X,U , φ) is called uniformly locally stable (ULS),

if there exist σ ∈ K∞, γ ∈ K∞ ∪ {0} and r > 0 such that for all x ∈ Br, u ∈ Br,U
and all t so that (t, x, u) ∈ Dφ, the estimate () holds.

Lemma 3.5. Let Σ = (X,U , φ) be an UGS control system. If Σ has the BIC
property, then Σ is forward complete.

Proof. Pick any x ∈ X and u ∈ U . Then there is a maximal existence time
t∗ so that (t, x, u) ∈ Dφ for all t ∈ [0, t∗). Assume that t∗ < ∞. As Σ is UGS,
lim supt→t∗ ‖φ(t, x, u)‖X <∞, and we obtain a contradiction to the BIC property of
Σ. Hence t∗ = +∞ and Σ is forward complete.

For forward complete systems we introduce the following asymptotic properties
Definition 3.6. A forward complete system Σ = (X,U , φ) has the
(i) asymptotic gain (AG) property, if there is a γ ∈ K∞ ∪ {0} such that for all

ε > 0, for all x ∈ X and for all u ∈ U there exists a τ = τ(ε, x, u) <∞ such
that

(3.4) t ≥ τ ⇒ ‖φ(t, x, u)‖X ≤ ε+ γ(‖u‖U ).

(ii) strong asymptotic gain (sAG) property, if there is a γ ∈ K∞ ∪ {0} such that
for all x ∈ X and for all ε > 0 there exists a τ = τ(ε, x) < ∞ such that for
all u ∈ U

(3.5) t ≥ τ ⇒ ‖φ(t, x, u)‖X ≤ ε+ γ(‖u‖U ).

(iii) bounded input uniform asymptotic gain (bUAG) property, if there exists a
γ ∈ K∞ ∪ {0} such that for all ε, r > 0 there is a τ = τ(ε, r) < ∞ such that
for all u ∈ U : ‖u‖U ≤ r and all x ∈ Br

(3.6) t ≥ τ ⇒ ‖φ(t, x, u)‖X ≤ ε+ γ(‖u‖U ).
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(iii) uniform asymptotic gain (UAG) property, if there exists a γ ∈ K∞∪{0} such
that for all ε, r > 0 there is a τ = τ(ε, r) <∞ such that for all u ∈ U and all
x ∈ Br the implication () holds.

All types of asymptotic gain properties imply that all trajectories converge to the
ball of radius γ(‖u‖U ) around the origin as t→∞. The difference between AG, sAG,
bUAG and UAG is in the kind of dependence of τ on the states and inputs. In UAG
systems this time depends (besides ε) only on the norm of the state, in sAG systems,
it depends on the state x (and may vary for different states with the same norm), but
it does not depend on u. In AG systems τ depends both on x and on u.

The following lemma shows how bUAG property can be ’upgraded’ to the UAG
and ISS properties.

Lemma 3.7. Let Σ = (X,U , φ) be a control system with a BIC property. If Σ is
UGS and bUAG, then Σ is forward compete, UAG and ISS.

Proof. As Σ satisfies BIC property and is UGS, then it is forward complete (in
particular, the property bUAG assumed for Σ makes sense).

Pick arbitrary ε > 0, r > 0 and let τ and γ be as in the formulation of the bUAG
property. Let x ∈ Br and let u ∈ U arbitrary. If ‖u‖U ≤ r, then () is the desired
estimate.

Let ‖u‖U > r. Hence it holds that ‖u‖U > ‖x‖X . Due to uniform global stability
of Σ, it holds for all t, x, u that

‖φ(t, x, u)‖X ≤ σ(‖x‖X) + γ(‖u‖U ),

where we assume that γ is same as in the definition of a bUAG property (otherwise
pick the maximum of both). For ‖u‖U > ‖x‖X we obtain that

‖φ(t, x, u)‖X ≤ σ(‖u‖U ) + γ(‖u‖U ),

and thus for all x ∈ X, u ∈ U it holds that

t ≥ τ ⇒ ‖φ(t, x, u)‖X ≤ ε+ γ(‖u‖U ) + σ(‖u‖U ),

which shows UAG property with the asymptotic gain γ + σ.
As Σ is forward complete, UAG and UGS, the ISS property of Σ follows by [,

Theorem 5].

4. Coupled systems and gain operators. In this subsection we consider n
systems Σi := (Xi, PC(R+, X6=i)×U , φ̄i), i = 1, . . . , n, where all Xi, i = 1, . . . , n and
U are normed linear spaces. Furthermore, we assume that all Σi, i = 1, . . . , n are
forward complete.

Stability properties introduced in Section are defined in terms of the norms of
the whole input, and this is not suitable for consideration of coupled systems, as we
are interested not only in the collective influence of all inputs over a subsystem, but
in the influence of particular subsystems over a given subsystem.

Therefore we reformulate the ISS property for a subsystem in the following form:
Lemma 4.1. A forward complete system Σi is ISS (in summation formulation) if

there exist γij , γi ∈ K∪ {0}, j = 1, . . . , n and βi ∈ KL, such that for all initial values
xi ∈ Xi, all internal inputs w 6=i := (w1, . . . , wi−1, wi+1, . . . , wn) ∈ PC(R+, X6=i), all
external inputs u ∈ U and all t ∈ R+ the following estimate holds:

‖φ̄i
(
t, xi, (w6=i, u)

)
‖Xi ≤ βi

(
‖xi‖Xi

, t
)

+
∑
j 6=i

γij

(
‖wj‖[0,t]

)
+ γi (‖u‖U ) .(4.1)
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Proof. As Σi is ISS, there is a γ ∈ K∞ so that for all t, xi, w6=i, u it holds that

‖φ̄i
(
t, xi, (w 6=i, u)

)
‖Xi ≤ βi

(
‖xi‖Xi

, t
)

+ γ(‖(w 6=i, u)‖C(R+,X 6=i)×U )

= βi
(
‖xi‖Xi , t

)
+ γ
((∑

j 6=i

‖wj‖2PC(R+,Xj)
+ ‖u‖2U

)1/2)
≤ βi

(
‖xi‖Xi

, t
)

+ γ
(∑
j 6=i

‖wj‖PC(R+,Xj) + ‖u‖U
)

≤ βi
(
‖xi‖Xi

, t
)

+
∑
j 6=i

γ
(
n‖wj‖PC(R+,Xj)

)
+ γ(n‖u‖U ),

where in the last estimate we have exploited the estimate γ(s1 + . . .+ sn) ≤ γ(ns1) +
. . .+ γ(nsn), which holds for all γ ∈ K and all s1, . . . , sn ≥ 0.

Defining γij(r) := γ(nr) and γi(r) := γ(nr), we obtain due to causality of Σi that

‖φ̄i
(
t, xi, (w6=i, u)

)
‖Xi
≤ βi

(
‖xi‖Xi

, t
)

+
∑
j 6=i

γij
(
‖wj‖[0,t]

)
+ γi(‖u‖U ).

Conversely, let the property in the statement of the lemma holds. Define γ(r) :=
γi(r) +

∑
j 6=i γij(r), r ∈ R+. Then we have for all t, xi, w6=i, u that

‖φ̄i
(
t, xi, (w6=i, u)

)
‖Xi ≤ βi

(
‖xi‖Xi

, t
)

+
∑
j 6=i

γij

(
‖wj‖[0,t]

)
+ γi (‖u‖U )

≤ βi
(
‖xi‖Xi

, t
)

+
∑
j 6=i

γ
(
‖wj‖[0,t]

)
+ γ (‖u‖U )

≤ βi
(
‖xi‖Xi

, t
)

+ γ

(
max
j 6=i
{‖wj‖[0,t] , ‖u‖U}

)
≤ βi

(
‖xi‖Xi

, t
)

+ γ(‖(w6=i, u)‖C(R+,X 6=i)×U ).

This shows the claim.
The functions γij and γi in the statement of Lemma are called (nonlinear)

gains. For notational simplicity we allow the case γij ≡ 0 and require γii ≡ 0 for all i.
Analogously, one can restate the definitions of UGS, AG and bUAG properties,

which we leave without the proof:
Lemma 4.2. Σi is UGS (in summation formulation) if and only if there exist

γij , γi ∈ K ∪ {0} and σi ∈ KL, such that for all initial values xi ∈ Xi, all internal
inputs w6=i := (w1, . . . , wi−1, wi+1, . . . , wn) ∈ PC(R+, X6=i), all external inputs u ∈ U
and all t ∈ R+ the following inequality holds

‖φ̄i
(
t, xi, (w 6=i, u)

)
‖Xi
≤ σi

(
‖xi‖Xi

)
+
∑
j 6=i

γij
(
‖wj‖[0,t]

)
+ γi (‖u‖U ) .(4.2)

Lemma 4.3. Σi is AG if and only if there exist γij , γi ∈ K ∪ {0} and βi ∈ KL,
such that for all xi ∈ Xi ,u ∈ U , w 6=i := (w1, . . . , wi−1, wi+1, . . . , wn) ∈ PC(R+, X6=i),
ε > 0 there is a time τi := τi(xi, u, w 6=i, ε) <∞ so that it holds that

(4.3) t ≥ τi ⇒ ‖φ̄i
(
t, xi, (w 6=i, u)

)
‖Xi ≤ ε+

∑
j 6=i

γij
(
‖wj‖∞

)
+ γi(‖u‖U ).
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Lemma 4.4. Σi is bUAG if and only if there exist γij , γi ∈ K∪{0} and βi ∈ KL,
such that for all ε > 0, for all r > 0 there is τi = τi(ε, r) < ∞ such that for all
u ∈ U : ‖u‖U ≤ r and all xi ∈ Br(0, Xi), for all w 6=i := (w1, . . . , wi−1, wi+1, . . . , wn) ∈
PC(R+, X6=i): ‖wj‖∞ ≤ r the implication () holds.

In above definitions wj , j = 1, . . . , n are general inputs, which are not necessarily
related to the states of other subsystems (i.e. we have considered all Σi as discon-
nected systems). Now assume that the interconnection of forward complete systems
Σ1, . . . ,Σn as introduced in Section, which we call Σ := ( X,U , φ), is a well-defined
control system with a BIC property.

Pick arbitrary x ∈ X and u ∈ U and define for i = 1, . . . , n the following quanti-
ties:

φi := φi(·, x, u), φ6=i = (φ1, . . . , φi−1, φi+1, . . . , φn).(4.4)

We would like to rewrite the definitions of ISS and UGS, specialized for the inputs
wj := φj , in a shorter vectorized form, using the shorthand notation from [], intro-
duced next.

For vector functions w = (w1, . . . , wn)T : R+ → X1 × . . . × Xn such that wi ∈
C(R+, Xi), i = 1, . . . , n and times 0 ≤ t1 ≤ t2 we define

w[t1,t2]

:=

‖w1,[t1,t2]‖∞
...

‖wn,[t1,t2]‖∞

 ∈ Rn+.

Furthermore, we introduce for all t, u and all x = (x1, . . . , xn) ∈ X the following
notation:

φ̄(t, x, u)
:=

 ‖φ̄1(t, x1, (φ 6=1, u))‖X1

...
‖φ̄n(t, xn, (φ 6=n, u))‖Xn

 ∈ Rn+ , γ(‖u‖U ) :=

 γ1(‖u‖U )
...

γn(‖u‖U )

 ∈ Rn+

(4.5)

and β(s, t) :=

 β1(s1, t)
...

βn(sn, t)

 .(4.6)

We are going to collect all the internal gains in the matrix Γ := (γij)i,j=1,...,n,
which we call the gain matrix. If the gains are taken from the ISS restatement (),
then we call the corresponding gain matrix ΓISS . Analogously, the gain matrices
ΓUGS , ΓAG, ΓUAG are defined.

Now for a given gain matrix Γ define the operator Γ⊕ : Rn+ → Rn+ by

(4.7) Γ⊕s :=

 n∑
j=1

γ1j(sj), . . . ,

n∑
j=1

γnj(sj)

T

, s = (s1, . . . , sn)T ∈ Rn+.

Again, in order to emphasize that the gains are from the ISS restatement (),
the corresponding gain operators of sum and max type will be denoted by ΓISS⊕
respectively.
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Note that by the properties of γij for s1, s2 ∈ Rn+ we have the implication

(4.8) s1 ≥ s2 ⇒ Γ⊕(s1) ≥ Γ⊕(s2),

so that Γ⊕ defines a monotone (w.r.t. the order ≥ in Rn) map.
The ISS conditions () with this notation imply that for t ≥ 0 it holds that

(4.9)
φ̄(t, x, u)

≤ β(
φ̄(0, x, u)

, t) + ΓISS⊕ (
φ[0,t]) + γ(‖u‖U ).

Analogously, the UGS conditions () imply that for t ≥ 0 it holds that

(4.10)
φ̄(t, x, u)

≤ σ(
φ̄(0, x, u)

) + ΓUGS⊕ (
φ[0,t]) + γ(‖u‖U ).

In order to guarantee stability of the interconnection Σ, the properties of the
operators ΓUGS⊕ and ΓISS⊕ will be crucial.

We introduce the following notation. For αi ∈ K∞, i = 1, . . . , n define D : Rn+ →
Rn+ by

(4.11) D(s1, . . . , sn)T :=

 (Id + α1)(s1)
...

(Id + αn)(sn)

 .

A fundamental role will be played by the following operator conditions:
Definition 4.5. We say that a nonlinear operator A : Rn+ → Rn+ satisfies
• the small-gain condition, if

(4.12) A(s) 6≥ s, ∀s ∈ Rn+ \ {0}.

• the strong small-gain condition, if there exists a mapping D as in () , such
that

(4.13) (A ◦D)(s) 6≥ s, ∀s ∈ Rn+ \ {0}.

For the proof of small-gain theorems we use a technical result, see [, Lemma
13, p. 102]. We state it in a somewhat more general form than it was done in [],
although the proof remains basically the same.

Lemma 4.6. Let A : Rn+ → Rn+ be a monotone w.r.t. the order in Rn and
continuous operator with A(0) = 0, satisfying the strong small gain condition () .
Then there exists a ξ ∈ K∞ such that for all w, v ∈ Rn+ inequality

(4.14) (Id−A)(w) ≤ v

implies |w| ≤ ξ(|v|).
Proof. In the proof of [, Lemma 13, p. 102] it was shown that for all w, v ∈ Rn+

satisfying (), it holds that

w ≤ R(|v|max, . . . , |v|max)T ,(4.15)

where R :=
(
D ◦ (D − Id)−1 ◦ (Id +A)

)n
. As A(0) = 0, we have R(0) = 0 as

well. Furthermore, R is continuous and monotone as a composition of continuous and
monotone maps. Moreover, as D ◦ (D − Id)−1 ∈ K∞n, it holds that if ai > bi for all
i = 1, . . . , n, then also R(a)i > R(b)i for all i = 1, . . . , n.

Define ξ(r) := |R(r, . . . , r)|. Then ξ(0) = 0, ξ is continuous, strictly increasing
and unbounded (since D ◦ (D − Id)−1 ∈ K∞n). With this ξ we obtain |w| ≤ ξ(|v|).
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5. Small-gain theorems for control systems. In this section we show small-
gain theorems for UGS, ISS, AG and weak ISS properties.

5.1. UGS small-gain theorem. We start with a small-gain theorem which
guarantees that a coupling of UGS systems is a UGS system again provided the strong
small-gain condition () holds. This will in particular show that the coupled system
is forward complete. This result and its proof are an infinite-dimensional version of
[, Theorem 8].

Theorem 5.1 (UGS Small-gain theorem). Let Σi := (Xi, PC(R+, X6=i)×U , φ̄i),
i = 1, . . . , n be control systems, where all Xi, i = 1, . . . , n and U are normed linear
spaces. Assume that Σi, i = 1, . . . , n are forward complete systems, satisfying the UGS
estimates as in Lemma, and that the interconnection Σ = (X,U , φ) is well-defined
and possesses the BIC property.

If ΓUGS⊕ satisfies the strong small gain condition () , then Σ is forward com-
plete and UGS.

Proof. Pick any u ∈ U and any initial condition x ∈ X. As we assume that the
interconnection Σ = (X,U , φ) is well-defined, by definition of a control system, the
solution of Σ exists on a certain interval [0, t], where t ∈ (0,+∞]. Define φi and φ 6=i
as in ().

According to the definition of the interconnection, for all i = 1, . . . , n it holds
that φi(s, x, u) = φ̄i(s, xi, (φ 6=i, u)), s ∈ [0, t] and hence we have

 sups∈[0,t] ‖φ̄1(s, x1, (φ 6=1, u))‖X1

...
sups∈[0,t] ‖φ̄n(s, xn, (φ 6=n, u))‖Xn

 =

 sups∈[0,t] ‖φ1(s, x, u)‖X1

...
sups∈[0,t] ‖φn(s, x, u)‖Xn


=

 ‖φ1,[0,t]‖∞...
‖φn,[0,t]‖∞

 =:
φ[0,t].

(5.1)

By assumptions, on [0, t] the estimate () is valid. Taking in this estimate the
supremum over [0, t], and making use of (), we see that

(5.2)
φ[0,t]≤ σ(

φ̄(0, x, u)
) + ΓUGS⊕ (

φ[0,t]) + γ(‖u‖U ),

and thus

(5.3) (I − ΓUGS⊕ )
φ[0,t]≤ σ(

φ̄(0, x, u)
) + γ(‖u‖U ),

As ΓUGS⊕ is a monotone operator satisfying the strong small-gain condition, by Lemma
there is a ξ ∈ K∞ so that

|
φ[0,τ ]| ≤ ξ(σ(|

φ̄(0, x, u)
|) + γ(‖u‖U )

)
≤ ξ
(
2σ(|

φ̄(0, x, u)
|))+ ξ

(
2γ(‖u‖U )

)
.(5.4)

Finally, |
φ̄(0, x, u)

| = |(‖x1‖X1
, . . . , ‖xn‖Xn

)| = ‖x‖X and

‖φ(t, x, u)‖X =

√√√√ n∑
i=1

‖φi(t, x, u)‖2Xi
≤

√√√√ n∑
i=1

‖φi,[0,t]‖2∞ = |
φ[0,τ ]|.(5.5)
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Combining this estimate with (), we see that a UGS estimate

‖φ(t, x, u)‖X ≤ ξ
(
2σ(‖x‖X)

)
+ ξ
(
2γ(‖u‖U )

)
(5.6)

is valid on the certain maximal interval of existence [0, t∗) of φ(·, x, u). As we assume
that Σ possesses the BIC property, then Σ is forward complete, see Lemma.

5.2. ISS small-gain theorem. We start with a technical lemma:
Lemma 5.2. Let g : R+ → Rp+, p ∈ N be a globally bounded function and let

f : R+ → R+ be an unbounded monotone function. Then

lim
t→∞

sup
s≥f(t)

g(s) = lim
t→∞

sup
s≥t

g(s).(5.7)

Proof. Define a := limt→∞ sups≥f(t) g(s) and b := limt→∞ sups≥t g(s). As g is
globally bounded, both a and b are well-defined and finite. By definition it follows
that for all ε > 0 there is a time T > 0 so that

t ≥ T ⇒ sup
s≥f(t)

g(s) < a+ ε.

As f is monotone, this is equivalent to the fact that

t ≥ f(T ) ⇒ sup
s≥t

g(s) < a+ ε.

As ε can be chosen arbitrarily small, this shows that b ≤ a.
Conversely, we have that for all ε > 0 there is a time T > 0 so that

t ≥ T ⇒ sup
s≥t

g(s) < b+ ε.(5.8)

As f is unbounded, there is a time τ = τ(T ) so that f(τ) > T .
Thus, () shows that sup s≥f(τ) g(s) < b+ε and as f is monotone it follows that

t ≥ τ ⇒ sup
s≥f(t)

g(s) < b+ ε.

This implies that a ≤ b. Overall, a = b.
Now we are able to prove the main result of this paper.
Theorem 5.3 (ISS Small-gain theorem). Let Σi := (Xi, PC(R+, X6=i)× U , φ̄i),

i = 1, . . . , n be control systems, where all Xi, i = 1, . . . , n and U are normed linear
spaces. Assume that Σi, i = 1, . . . , n are forward complete systems, satisfying the ISS
estimates as in Lemma, and that the interconnection Σ = (X,U , φ) is well-defined
and possesses the BIC property.

If ΓISS⊕ satisfies the strong small gain condition () , then Σ is ISS.
Proof. We show UGS and bUAG properties of the interconnection Σ = (X,U , φ),

and infer ISS of Σ by Lemma.
UGS. From the assumptions of the theorem it follows that all Σi are UGS with the
gain matrix ΓISS . As ΓISS⊕ satisfies the strong small gain condition, Theorem
shows that the coupled system Σ is forward complete and UGS.
bUAG. We use the notation () for φi and φ 6=i. As Σ is a well-defined and for-
ward complete interconnection, we have that φi(t, x, u) = φ̄i(t, xi, (φ 6=i, u)) for all
i = 1, . . . , n and for all t ≥ 0.
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Pick any r > 0, any u ∈ U : ‖u‖U ≤ r and any x ∈ Br. As Σ is UGS, the estimate
() is valid for some σUGS , γUGS ∈ K∞ and it holds that

‖φ(t, x, u)‖X ≤ µ(r) := σUGS(r) + γUGS(r), t ≥ 0.(5.9)

On the other hand, for all i = 1, . . . , n in view of the cocycle property it holds for any
t, τ ≥ 0 that

φi(t+ τ, x, u) = φ̄i(t+ τ, xi, (φ 6=i, u))

= φ̄i

(
τ, φ̄i

(
t, xi, (φ 6=i, u)

)
,
(
φ 6=i(·+ t), u(·+ t)

))
.(5.10)

Note that due to the axiom of shift invariance, it holds that u(t+ ·) ∈ U .

In view of () we have for all i = 1, . . . , n that

‖φ̄i(t, xi, φ6=i, u)‖Xi
= ‖φi(t, x, u)‖Xi

≤ ‖φ(t, x, u)‖X ≤ µ(r)(5.11)

and

‖φ 6=i‖∞ ≤ µ(r).(5.12)

Furthermore, as σUGS(r) ≥ r for all r ∈ R+ (this follows from () by setting u := 0
and t := 0), we have also

‖u‖U ≤ µ(r).(5.13)

By the bUAG property of Σi (which is implied by ISS of Σi), there is a time τi =
τi(ε, µ(r)) so that

‖x‖X ≤ r ∧ ‖u‖U ≤ r ∧ τ ≥ τi
⇒ ‖φi(t+ τ, x, u)‖Xi

≤ ε+
∑
j 6=i

γij
(∥∥φj,[t,+∞)

∥∥
∞

)
+ γi(‖u[t,+∞)‖U )

≤ ε+
∑
j 6=i

γij
(∥∥φj,[t,+∞)

∥∥
∞

)
+ γi(‖u‖U ).(5.14)

Note that dependence of τi on r and ε only (and not on x, u and t) follows from the
estimates (), () and ().

Define the convergence time which is uniform for all subsystems (it is finite, as
we have finitely many subsystems):

τ∗(ε, r) := max
i=1,...,n

τi(ε, µ(r)).(5.15)

Pick any k ∈ N. Taking supremum of () over x ∈ Br and over all u ∈ U :
‖u‖U ∈ [2−kr, 21−kr], we obtain for all i = 1, . . . , n and all τ ≥ τ∗ that

sup
‖u‖U∈[2−kr,21−kr]

sup
x∈Br

‖φi(t+ τ, x, u)‖Xi

≤ ε+
∑
j 6=i

γij

(
sup

‖u‖U∈[2−kr,21−kr]

sup
x∈Br

∥∥φj,[t,+∞)

∥∥
∞

)
+ γi(2

1−kr)(5.16)
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and thus

sup
s≥t+τ∗

sup
‖u‖U∈[2−kr,21−kr]

sup
x∈Br

‖φi(s, x, u)‖Xi

≤ ε+
∑
j 6=i

γij

(
sup

‖u‖U∈[2−kr,21−kr]

sup
x∈Br

sup
s≥t
‖φj(s, x, u)‖Xj

)
+ γi(2

1−kr)

= ε+
∑
j 6=i

γij

(
sup
s≥t

sup
‖u‖U∈[2−kr,21−kr]

sup
x∈Br

‖φj(s, x, u)‖Xj

)
+ γi(2

1−kr).(5.17)

Define

yi(r, k) := lim
t→+∞

sup
s≥t

sup
‖u‖U∈[2−kr,21−kr]

sup
x∈Br

‖φi(s, x, u)‖Xi

= lim sup
t→+∞

sup
‖u‖U∈[2−kr,21−kr]

sup
x∈Br

‖φi(t, x, u)‖Xi .

By Lemma it holds that

yi(r, k) = lim
t→+∞

sup
s≥t+τ∗

sup
‖u‖U∈[2−kr,21−kr]

sup
x∈Br

‖φi(s, x, u)‖Xi

and thus taking a limit t→∞ in (), we have that

yi(r, k) ≤ ε+
∑
j 6=i

γij (yj(r, k)) + γi(2
1−kr).(5.18)

As () is valid for arbitrarily small ε > 0, we obtain by computing the limit ε→ 0
that

yi(r, k) ≤
∑
j 6=i

γij (yj(r, k)) + γi(2
1−kr), i = 1, . . . , n.(5.19)

With the notation () and by defining y(r, k) := (y1(r, k), . . . , yn(r, k))T ∈ Rn+ we
can rewrite () in a vector form:

y(r, k) ≤ ΓISS⊕ (y(r, k)) + γ(21−kr).(5.20)

Since ΓISS⊕ is a monotone operator satisfying the strong small-gain condition, we
obtain by applying Lemma to the inequality

(Id− ΓISS⊕ )y(r, k) ≤ γ(21−kr)

that there is ξ ∈ K∞ so that

|y(r, k)| ≤ ξ(|γ(21−kr)|).
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Using a technical computation

lim sup
t→+∞

sup
‖u‖U∈[2−kr,21−kr]

sup
x∈Br

‖φ(t, x, u)‖X

= lim sup
t→+∞

sup
‖u‖U∈[2−kr,21−kr]

sup
x∈Br

√√√√ n∑
i=1

‖φi(t, x, u)‖2Xi

≤

√√√√ n∑
i=1

lim sup
t→+∞

sup
‖u‖U∈[2−kr,21−kr]

sup
x∈Br

‖φi(t, x, u)‖2Xi

=

√√√√ n∑
i=1

y2i (r, k) = |y(r, k)|,

we conclude, that for any r > 0 and any k ∈ N it holds that

lim sup
t→+∞

sup
‖u‖U∈[2−kr,21−kr]

sup
x∈Br

‖φ(s, x, u)‖X ≤ ξ(|γ(21−kr)|).

which means that for any ε > 0, any r > 0 and any k ∈ N there is a time τ̃ = τ̃(ε, r, k)
so that

‖x‖X ≤ r ∧ ‖u‖U ∈ [2−kr, 21−kr] ∧ t ≥ τ̃(ε, r, k)

⇒ ‖φ(s, x, u)‖X ≤ ε+ ξ(|γ(21−kr)|).
(5.21)

Define k0 = k0(ε, r) ∈ N as the minimal k so that ξ(|γ(21−kr)|) ≤ ε (clearly, such k0
always exists and is finite) and let

τ̂(ε, r) := max{τ̃(ε, r, k) : k = 1, . . . , k0(ε, r)}.

As k0 is finite, τ̂(ε, r) is finite as well.
Pick any u ∈ U so that ‖u‖U ≤ r. Then there is k ∈ N so that ‖u‖U ∈

(2−kr, 21−kr]. If k ≤ k0 (i.e. if inputs are large enough), then for t ≥ τ̂(ε, r) it
holds that

‖φ(s, x, u)‖X ≤ ε+ ξ(|γ(21−kr)|) ≤ ε+ ξ(|γ(2‖u‖U )|).(5.22)

It remains to consider the case when k > k0, i.e. when inputs are small. The estimate
() gives convergence time, which depends on k and it is not clear whether the
supremum of τ̃(ε, r, k) over all k ≥ k0 exists. In order to overcome this obstacle and
to find the uniform time, we mimic above argument once again, namely: for any
q ∈ [0, r] one can take supremum of () over x ∈ Br and over all u ∈ U : ‖u‖U ≤ q,
to obtain for all i = 1, . . . , n and all τ ≥ τ∗ that

sup
‖u‖U≤q

sup
x∈Br

‖φi(t+ τ,x, u)‖Xi

≤ ε+
∑
j 6=i

γij

(
sup
‖u‖U≤q

sup
x∈Br

∥∥φj,[t,+∞)

∥∥
∞

)
+ γi(q),

(5.23)

where τ∗ has been defined in (). Defining

zi(r, q) := lim
t→+∞

sup
s≥t

sup
‖u‖U≤q

sup
x∈Br

‖φi(s, x, u)‖Xi
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and doing analogous steps as above we obtain that for any r > 0 and any q ≤ r it
holds that

lim sup
t→+∞

sup
‖u‖U≤q

sup
x∈Br

‖φ(s, x, u)‖X ≤ ξ(|γ(q)|).

This means that for any ε > 0, any r > 0 and any k ∈ N there is a time τ̄ = τ̄(ε, r, q)
so that

‖x‖X ≤ r ∧ ‖u‖U ≤ q ∧ t ≥ τ̄(ε, r, q) ⇒ ‖φ(s, x, u)‖X ≤ ε+ ξ(|γ(q)|).(5.24)

In particular, for q0 := 21−k0(ε,r)r we have that

‖x‖X ≤ r ∧ ‖u‖U ≤q0 ∧ t ≥ τ̄(ε, r, q0)

⇒ ‖φ(s, x, u)‖X ≤ ε+ ξ(|γ(21−k0(ε,r)r)|) ≤ ε+ ε.
(5.25)

Define

τ(ε, r) := max{τ̂(ε, r), τ̄(ε, r, q)}.

Combining () and (), we obtain that

‖x‖X ≤ r ∧‖u‖U ≤ r ∧ t ≥ τ(ε, r) ⇒ ‖φ(s, x, u)‖X ≤ ε+ max{ε, ξ(|γ(2‖u‖U )|)}.

and finally

‖x‖X ≤ r ∧ ‖u‖U ≤ r ∧ t ≥ τ(ε, r) ⇒ ‖φ(s, x, u)‖X ≤ 2ε+ ξ(|γ(2‖u‖U )|).

As r 7→ ξ(|γ(2r)|) is a K∞-function, this implication shows that Σ is bUAG.
ISS. Since Σ is UGS ∧ bUAG, Lemma implies ISS of Σ.

Remark 5.4 (Discussion of the proof of Theorem ). A key step in the proof
of Theorem is the shifting of the time horizon, see () , achieved by means of
the cocycle property () . It is important that we want to achieve the dependence of
the convergence time τi on r and ε only, which follows from () , () and () ,
which are valid in turn since we consider the inputs with a norm uniformly bounded
by r. Having an arbitrary u would result that the norm of the state φi(t, xi, φ6=i, u) in
() , and hence the time τi would depend on the norm of u, which makes it hard to
obtain UAG property of the interconnection. Using bUAG property instead helps us to
avoid these complications and this is one of the reasons for introducing this property.

Then, in order to tackle the distinction in the time intervals over which the supre-
mum in the left and right hand sides of () is taken, we pass to the limit t→∞.
However, before we can compute such limit we have to make the expressions in both
sides of () independent on x, u. Taking supremum over x ∈ Br causes no prob-
lems, but taking a supremum over u ∈ Br,U leads to overly rough estimates, and thus
we slice the ball u ∈ Br,U into several ’rings’, which helps in the end to obtain the
desired bUAG property of the whole interconnection.

Remark 5.5 (Applications of the ISS small-gain theorem). Theorem is very
general and applicable for networks of heterogeneous infinite-dimensional systems,
consisting of components belonging to different system classes, with boundary and
in-domain couplings, as long as these systems are well-defined and possess the BIC
property. In particular, our ISS small-gain theorem is applicable to the interconnec-
tions of ISS ODE systems, interconnections of evolution equation in Banach spaces
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and couplings of n time-delay systems. In all these cases the interconnections possess
the BIC property, see [] for details.

Specialized to couplings of ODE systems, Theorem boils down to the classic
small-gain theorem derived in []. However, already for couplings of n time-delay
systems Theorem is new. In contrast to [,,], we obtain not only UGS
∧ AG (i.e. weak ISS) small-gain results, but also ISS small-gain theorems obtain
(uniform) ISS small-gain results. Compared to ISS small-gain theorems obtained in
[], our approach provides an alternative way for verification of ISS of a network
of delay systems, which does not require a transformation of retarded systems into
delay-free ones and is applicable to the sum formulation of the ISS property.

5.3. AG and weak ISS small-gain theorem. Our next result is the small-
gain theorem for the asymptotic gain property.

Theorem 5.6 (AG Small-gain theorem). Let Σi := (Xi, PC(R+, X6=i)× U , φ̄i),
i = 1, . . . , n be control systems, where all Xi, i = 1, . . . , n and U are normed linear
spaces. Assume that Σi, i = 1, . . . , n are forward complete systems, satisfying the
AG estimates as in Lemma, and that the interconnection Σ is well-defined and
forward complete.

If ΓAG⊕ satisfies the strong small gain condition () , then Σ is AG.

In this case the complexities, described in Remark do not appear, and the proof
goes along the lines of the proof of Theorem, with significant simplifications. Hence
in the following rather sketchy argument we merely indicate the main differences to
the detailed proof of Theorem. It is also possible to show Theorem along the
lines of the proof of the corresponding finite-dimensional counterpart [, Theorem 9].

Proof. [Sketch] Define φi := φi(·, x, u) and φ 6=i := (φ1, . . . , φi−1, φi+1, . . . , φn),
i = 1, . . . , n.

Pick any x ∈ X and any u ∈ U . The cocycle property () and AG property of
Σi imply existence of a time τi = τi(ε, x, u, t) which we can assume to be an increasing
function of t, such that

sup
τ≥τi+t

‖φi(τ, x, u)‖Xi
= sup
τ≥τi
‖φi(t+ τ, x, u)‖Xi

≤ ε+
∑
j 6=i

γij
(∥∥φj,[t,+∞)

∥∥
∞

)
+ γi(‖u‖U ).(5.26)

Note that the time τi depends on the tuple (ε, φi(t, xi, φ6=i, u), φ6=i(· + t), u(· + t)) in
(), but all these parameters depend on ( ε, x, u, t) only.

Defining

τ∗(ε, x, u, t) := max
i=1,...,n

τi(ε, x, u, t), yi(x, u) := lim
t→+∞

sup
s≥t
‖φi(s, x, u)‖Xi

,

and

y(r, k) := (y1(r, k), . . . , yn(r, k))T ∈ Rn+,

and doing the same steps as in the proof of ISS small-gain theorem we obtain that
there is ξ ∈ K∞ so that

lim sup
t→+∞

‖φ(s, x, u)‖X = |y(r, k)| ≤ ξ(|γ(‖u‖U )|),(5.27)
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which is precisely the asymptotic gain property of Σ.
Remark 5.7. A notable difference in the assumptions of the AG small-gain

theorem, in compare to UGS and ISS small-gain theorems is that the forward com-
pleteness of the interconnection is required. The assumption of forward-completeness
cannot be relaxed to merely BIC property, as demonstrated in [, Section 4.2] already
for couplings of ODE systems.

Definition 5.8. A control system Σ possessing the BIC property is called weakly
ISS, provided Σ is UGS and possesses AG property. It is then forward complete, see
Lemma.

For ODEs weak ISS is equivalent to ISS, but it is much weaker than ISS even for
linear infinite-dimensional systems.

As a combination of UGS and AG small-gain theorems we obtain
Theorem 5.9 (Weak ISS Small-gain theorem). Let Σi := (Xi, PC(R+, X6=i) ×

U , φ̄i), i = 1, . . . , n be control systems, where all Xi, i = 1, . . . , n and U are normed
linear spaces. Assume that Σi, i = 1, . . . , n are forward complete weakly ISS systems
with the same gain matrices ΓwISS for both AG and UGS property (formulated as in
Lemma, Lemma, and that the interconnection Σ is well-defined and possesses
the BIC property.

If ΓwISS⊕ satisfies the strong small gain condition () , then Σ is weakly ISS as
well.

Proof. As each subsystem of Σ is UGS, Σ possesses the BIC property, and ΓwISS⊕
is a gain operator for UGS property, Theorem shows that Σ is forward complete
and UGS. As weakly ISS systems possess an AG property, Σ is forward complete
and ΓwISS⊕ is a gain operator for AG property satisfying the small-gain condition,
Theorem implies that Σ has AG property. Thus, Σ is weakly ISS.

5.4. Semimaximum and maximum formulations of ISS. In Lemma we
have reformulated the ISS property in a way that the total influence of subsystems is
the sum of the internal gains. In some cases this formulation is the most convenient,
but in the other cases other restatements can be more useful.

Another important restatement, which mixes summation and maximization, is
given in the next lemma:

Lemma 5.10. A forward complete system Σi is ISS (in semimaximum formu-
lation) if there exist γij , γi ∈ K ∪ {0}, j = 1, . . . , n and βi ∈ KL, such that for
all initial values xi ∈ Xi, all internal inputs w6=i := (w1, . . . , wi−1, wi+1, . . . , wn) ∈
PC(R+, X6=i), all external inputs u ∈ U and all t ∈ R+ the following holds:

‖φ̄i
(
t, xi, (w6=i, u)

)
‖Xi ≤ βi

(
‖xi‖Xi

, t
)

+ max
j 6=i
{γij

(
‖wj‖[0,t]

)
}+ γi (‖u‖U ) .(5.28)

Proof. The proof is analogous to the proof of Lemma and is omitted.
We can collect all the internal gains γij from the semimaximum reformulation

() of ISS again into the matrix Γ and introduce instead of the operator Γ ⊕ the
operator Γ⊗ : Rn+ → Rn+ acting for s = (s1, . . . , sn)T ∈ Rn+ as

(5.29) Γ⊗(s1, . . . , sn)T :=

(
n

max
j=1

γ1j(sj), . . . ,
n

max
j=1

γnj(sj)

)T
.

Similarly to Γ⊕, the operator Γ⊗ is a monotone (w.r.t. the order ≥ in Rn) map, i.e.

(5.30) s1 ≥ s2 ⇒ Γ⊗(s1) ≥ Γ⊗(s2).
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A counterpart of the ISS small-gain Theorem for the semimaximum formula-
tion of the ISS property is given by the next result:

Theorem 5.11 (ISS Small-gain theorem in semimaximum formulation). Let
Σi := (Xi, PC(R+, X6=i) × U , φ̄i), i = 1, . . . , n be control systems, where all Xi,
i = 1, . . . , n and U are normed linear spaces. Assume that Σi, i = 1, . . . , n are
forward complete systems, satisfying the ISS estimates as in Lemma, and that
the interconnection Σ = (X,U , φ) is well-defined and possesses the BIC property.

If ΓISS⊗ satisfies the strong small gain condition () , then Σ is ISS.

Proof. Pick any u ∈ U and any x ∈ X. As the interconnection Σ is well-defined,
there is a certain t1 > 0 so that (t, x, u) ∈ Dφ for all t ∈ [0, t1]. Using the notation
and the arguments introduced in the UGS small-gain theorem in the summation form
(Theorem), we obtain the following estimate for all t ∈ [0, t1]:φ[0,t]≤ σ(

φ̄(0, x, u)
) + ΓISS⊗ (

φ[0,t]) + γ(‖u‖U ),

and as ΓISS⊗ is a monotone operator satisfying the strong small gain condition (),
we can again apply Lemma to show UGS property of the interconnection as it was
done in Theorem.

The rest of the proof goes along the lines of the proof of Theorem and is
omitted.

Finally, consider a reformulation of ISS in terms of maximums only:

Lemma 5.12. A forward complete system Σi is ISS (in maximum formulation) if
there exist γij , γi ∈ K∪ {0}, j = 1, . . . , n and βi ∈ KL, such that for all initial values
xi ∈ Xi, all internal inputs w 6=i := (w1, . . . , wi−1, wi+1, . . . , wn) ∈ PC(R+, X6=i), all
external inputs u ∈ U and all t ∈ R+ the following holds:

‖φ̄i
(
t, xi, (w6=i, u)

)
‖Xi ≤ max

j 6=i
{βi
(
‖xi‖Xi

, t
)
, γij

(
‖wj‖[0,t]

)
, γi (‖u‖U )}.(5.31)

As a corollary of Theorem, we obtain the following small-gain theorem for
the maximum reformulation of ISS

Corollary 5.13 (ISS Small-gain theorem in maximum formulation). Let Σi :=
(Xi, PC(R+, X6=i)×U , φ̄i), i = 1, . . . , n be control systems, where all Xi, i = 1, . . . , n
and U are normed linear spaces. Assume that Σi, i = 1, . . . , n are forward complete
systems, satisfying the ISS estimates as in Lemma, and that the interconnection
Σ = (X,U , φ) is well-defined and possesses the BIC property.

If ΓISS⊗ satisfies the strong small gain condition () , then Σ is ISS.

Proof. Clearly, if the subsystems of Σ satisfy the estimates (), then they
satisfy the estimates (). Hence the claim follows from Theorem.

Remark 5.14. There are many other ways for characterizing the total influence
of the inputs over a given subsystem, which can be formalized using so-called monotone
aggregation functions, see []. Our approach, based on Lemma, is not specifically
designed for a particular formulation of an ISS property and can be used for various
formulations of ISS.

5.5. Tightness of ISS small-gain theorems. Small-gain theorems for UGS,
ISS, AG and weak ISS properties have been derived in this paper under an assumption
that the strong small-gain condition () holds. A natural question is whether the
same result holds under weaker conditions.
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Consider the planar system considered in [, Example 18]:

ẋ1 = −x1 + x2(1− e−x2) + u(t),(5.32a)

ẋ2 = −x2 + x1(1− e−x1) + u(t).(5.32b)

In [, Example 18] it was shown that:
• Both subsystems of () are ISS in a summation formulation with the gains
γ12(r) = γ21(r) := r(1− e−r), r ∈ R+

• The corresponding operator Γ⊕, satisfies the small-gain condition (),
which boils down to checking that γ12 ◦ γ21(r) < r for all r > 0

• Γ⊕ does not satisfy the strong small-gain condition
• () is not ISS

Hence in the statement of the ISS small-gain theorem in the summation formulation
the requirement of the strong small-gain condition for Γ⊕ cannot be weakened to the
requirement of a small-gain condition for Γ⊕.

As for the interconnection of 2 systems the summation and semimaximum for-
mulations of the ISS property coincide and Γ⊕ = Γ⊗, the same example shows
the tightness of Theorem in the above sense. Note that although the system
() is not ISS, it is 0-UGAS, which can be shown using the Lyapunov function
V (x1, x2) = x21 + x22.

In the next proposition we show that for any gain matrix for which the corre-
sponding gain operator Γ⊕ does not satisfy the small-gain condition (), one can
construct a system with this gain matrix, so that each subsystem of this system is
ISS in the summation formulation, but the interconnection is not 0-UGAS.

Proposition 5.15. Let a gain matrix Γ := (γij)i,j=1,...,n ⊂ (K ∪ {0})n×n, with
γii = 0 for all i = 1, . . . , n be given. If the corresponding gain operator Γ⊕ does not
satisfy the small-gain condition () , then there exists f : Rn × Rm → Rn so that
each subsystem of the ODE system () is ISS, for all i = 1, . . . , n the estimates
() hold for all x ∈ Rn, u ∈ U , t ≥ 0, but the whole interconnection () has a
non-trivial equilibrium and thus is not 0-UGAS.

Proof. Let Γ⊕ does not satisfy the small-gain condition (). Then there is
s ∈ Rn+\{0} so that Γ⊕(s) ≥ s. Take ε > 0 so that

(1− ε)Γ⊕(s) = s(5.33)

and enlarge the domain of definition of functions γij to R, defining γij(−r) = −γij(r)
∀r > 0, i, j = 1, . . . n. With such definitions we can consider the operator Γ⊕ as an
operator acting on Rn, with the same defining formula ().

Consider the following ODE system on Rn:

ẋ = −x+ (1− ε)Γ⊕(x).(5.34)

The point x = s is a non-trivial equilibrium of this system, and hence () is not
0-UGAS.

However, all subsystems of () satisfy the following estimates

|xi(t)| ≤ |xi(0)| e−t + e−t
∫ t

0

es
n∑
j=1

(1− ε)γij(|xj(s)|)ds

≤ |xi(0)| e−t +

n∑
j=1

γij (‖xj‖∞) .
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and hence are ISS. This shows the claim.

Remark 5.16. It is possible to show a counterpart of Proposition for the
semimaximum formulation of ISS, see [, Theorem 1.5.9] and [, Theorem 1.5.10]
for the corresponding Lyapunov version.

5.5.1. On maximum formulation. ISS small-gain theorem in the maximum
formulation (Corollary) has been obtained as an easy consequence of our semi-
maximum ISS small-gain theorem. In the first step of the proof of Corollary
we make the given maximum estimates worse, by upperestimating the maximum by
the ’semimaximum’. This step is needed for our general approach, because otherwise
it is unclear how to use Lemma in its present form, which is our key technique.
However, this loss of a part of information about the subsystems prevents us from
obtaining a tight ISS small-gain theorem in the maximum formulation.

Indeed, in [] it was shown that at least in the special case of the evolution
equations in Banach spaces with the Lipschitz continuous right-hand sides () the
stronger result is valid: it is sufficient to require that Γ⊗ satisfies the small-gain
condition (), and the validity of the strong small-gain condition () is not
required. The technique, which has been used in [] to obtain the tight result was
specifically designed for the maximum formulation of the ISS property and is rather
different from our approach. This technique cannot be applied (at least without
substantial modifications) for verification of ISS of coupled system for which ISS
property of subsystems is formulated in a summation or semimaximum form. Hence
the results in [] are complementary to the results in this paper.

Nevertheless, since the class of the systems which we consider in this work is
much wider than those in [], Corollary is still of interest and not fully covered
by the results in [], although it is highly probably that the technique, used in [] can
be adapted to the general systems considered in this paper (again, for the maximum
formulation of the ISS property).

6. Characterizations of ISS by means of ULIM with ’bounded inputs’.
As bUAG property has been useful in the proof of an ISS small-gain theorem, it
is reasonable to expect, that it can be useful also in other contexts. Hence in this
section we characterize ISS in terms of bUAG and bULIM properties, which gives
characterizations, which are a bit stronger and more flexible than those, proved in
[].

Weaker counterparts of asymptotic gain properties are so-called limit properties.

Definition 6.1. We say that a forward complete system Σ = (X,U , φ) has the

(iii) bounded input uniform limit property (bULIM), if there exists γ ∈ K ∪ {0}
so that for every ε > 0 and for every r > 0 there exists a τ = τ(ε, r) such
that for all x with ‖x‖X ≤ r and all u ∈ U there is a t ≤ τ such that

‖φ(t, x, u)‖X ≤ ε+ γ(‖u‖U ).(6.1)

(iv) uniform limit property (ULIM), if there exists γ ∈ K ∪ {0} so that for every
ε > 0 and for every r > 0 there exists a τ = τ(ε, r) such that for all x with
‖x‖X ≤ r and all u ∈ U there is a t ≤ τ such that () holds.

It is easy to see that bUAG implies bULIM and UAG implies ULIM property.

Even nonuniformly globally asymptotically stable forward complete systems do
not always have uniform bounds for their reachability sets on finite intervals (see
[,]). Systems exhibiting such bounds deserve a special name.
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Definition 6.2. We say that a forward complete system Σ = (X,U , φ) has
bounded reachability sets (BRS), if for any C > 0 and any τ > 0 it holds that

sup
{
‖φ(t, x, u)‖X : ‖x‖X ≤ C, ‖u‖U ≤ C, t ∈ [0, τ ]

}
<∞.

Clearly, UAG property implies bUAG property. It is not completely clear, whether
the converse holds without further assumptions, as e.g. BRS property. However, for a
system satisfying bUAG property it is not possible in general to verify UAG (and even
sAG) property without an increase of the gain, as argued in the following example

Example 6.3. Consider a system

(6.2) ẋ = − 1

1 + |u(t)|
x,

where u ∈ U := L∞(R+,R) is a globally essentially bounded input and x(t) ∈ R is the
state.

It is easy to see that this system is forward complete and has a BRS property as
|φ(t, x, u)| ≤ |x| for all t ≥ 0, x ∈ R, u ∈ U . Let us show that () has a bUAG
property with a zero gain.

Pick any u ∈ U , x ∈ R and t ≥ 0. The corresponding solution of () can be
estimated as

|φ(t, x, u)| = e−
∫ t
0

1
1+|u(s)|ds|x| ≤ e−

∫ t
0

1
1+‖u‖∞

ds|x| = e−
1

1+‖u‖∞
t|x|.

Now pick any r > 0 and any ε > 0. Then for any u ∈ Br,U it holds that

|φ(t, x, u)| ≤ e−
1

1+r tr.

Now, let τ > 0 be so that e−
1

1+r τr = ε (clearly, such τ exists).
Overall, for all t ≥ τ , all x ∈ Br and all u ∈ Br,U it holds that |φ(t, x, u)| ≤ ε.

This shows bUAG property of () with a zero gain. At the same time, it is known
that () does not have a strong AG property with a zero gain, which is weaker than
UAG with a zero gain, see [, Remark 4].

Similarly to Lemma, the following result can be shown:
Lemma 6.4. Let Σ = (X,U , φ) be a control system. If Σ is UGS and bULIM,

then Σ is ULIM.
Although the notion of bUAG is used not as widely as the standard UAG (but see

e.g. [], [, Proposition 1.4.3.]), but it is in a certain sense even more natural than
UAG. Indeed, in characterizations of ISS in terms of UAG and ULIM properties shown
in [] the UAG (and uniform limit) properties have been applied almost exclusively
for uniformly bounded inputs, and as we see in the following theorem, validity of such
characterizations is retained if we use bUAG and bULIM properties instead of UAG
and ULIM properties.

Without loss of generality we restrict our analysis to fixed points of the form
(0, 0) ∈ X × U , so that we tacitly assume that the zero input is an element of U .

Definition 6.5. Consider a system Σ = (X,U , φ). We call 0 ∈ X an equilibrium
point (of the undisturbed system) if φ(t, 0, 0) = 0 for all t ≥ 0.

For characterizations of ISS we need one more notion
Definition 6.6. Consider a system Σ = (X,U , φ) with equilibrium point 0 ∈ X.

We say that φ is continuous at the equilibrium if for every ε > 0 and for any h > 0
there exists a δ = δ(ε, h) > 0, so that

t ∈ [0, h] ∧ ‖x‖X ≤ δ ∧ ‖u‖U ≤ δ ⇒ ‖φ(t, x, u)‖X ≤ ε.(6.3)
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In this case we will also say that Σ has the CEP property.

Now we show the following characterizations of ISS, which refine the main result
in []

Theorem 6.7. Let Σ = (X,U , φ) be a forward complete control system. The
following statements are equivalent:

(i) Σ is ISS.
(ii) Σ is UAG and UGS.

(iii) Σ is bUAG and UGS.
(iv) Σ is bULIM and UGS.
(v) Σ is bULIM, ULS and BRS.

(vi) Σ is bUAG, CEP and BRS.

Proof. The proof goes mostly along the lines of the characterizations of ISS,
obtained in [, Theorem 5].

(vi) ⇒ (v). Doing some minimal changes in [, Lemma 6] one can show that
bUAG ∧ CEP implies ULS property.

(v)⇒ (iv). Doing some minimal changes in [, Proposition 10] one can show that
bULIM ∧ BRS implies UGB property. By [, Lemma 4] UGB ∧ ULS is equivalent
to UGS property.

(iv) ⇒ (iii). Follows from the proof of [, Lemma 7].

(iii) ⇒ (ii). Follows from Lemma.

(ii) ⇒ (vi). Clear.

(ii) ⇔ (i). Follows by [, Lemma 8].

Remark 6.8 (Characterizations and small-gain theorems for strong ISS prop-
erty). In [] the notions of strong ISS, strong limit property (sLIM) and strong
asymptotic gain (sAG) have been defined, which are weaker than ISS, ULIM and
UAG properties respectively. It is possible to define the ’bounded inputs’ versions of
sLIM and sAG properties, which may be called bsLIM and bsAG, and show that

sISS ⇔ bsAG ∧ UGS ⇔ bsLIM ∧ UGS.

Since the proof of this result is completely analogous to the proofs of Theorem and
Lemma, we drop definitions and precise formulations of the results.

A harder and more interesting problem is to derive the small-gain theorem for sISS
property. The approach, used for the proof of ISS and weak ISS small-gain theorems
cannot be straightforwardly adapted for the sISS case. Indeed, applying the cocycle
property () , which is the starting point in our proof technique, leads to the fact
that the term φ̄i

(
t, xi, (φ 6=i, u)

)
depends on an input u. Hence the time τi, which is

obtained in the next step of the proof of small-gain theorem for ISS property, depends
on u as well (since it depends on φ̄i

(
t, xi, (φ 6=i, u)

)
). But this is not what we want in

order to achieve sAG (or bsAG) property of the interconnection.

7. Conclusion. We have proved a small-gain theorem for interconnections of n
nonlinear heterogeneous input-to-state stable control systems of a general nature. We
expect that these results will be particularly helpful for stability analysis of couplings
of time-delay systems, in-domain and boundary couplings of PDE systems as well as
for ODE-PDE and delay-PDE cascades. As the derived small-gain results are valid for
summation, semimaximum and maximum formulations (and potentially for further
formulations) of ISS, they allow for great flexibility in the analysis of networks of
distributed parameter systems. Small-gain theorems for asymptotic gain, uniform
global stability and weak input-to-state stability property have been proved as well
and the tightness of the obtained results has been discussed.
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We introduced the notions of bounded input uniform asymptotic gain property
and bounded input uniform limit property, which are easier to verify than the classical
uniform asymptotic gain and uniform limit properties, but which still lead to powerful
characterizations of input-to-state stability, which are an ultimately useful for ISS
theory.

Acknowledgements. The author thanks Fabian Wirth for insightful discus-
sions.
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