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Abstract: We prove a small-gain theorem for interconnections of n nonlinear heterogeneous
input-to-state stable control systems of a general nature, covering partial, delay and ordinary
differential equations. We use in this paper the summation formulation of the ISS property, but
the method can be adapted to other formulations of the ISS concept as well. The proof is based
on the recent characterizations of the input-to-state stability for infinite-dimensional systems in
terms of weaker stability properties.
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1. INTRODUCTION

The notion of input-to-state stability (ISS), introduced in
Sontag (1989) for ordinary differential equations (ODEs),
has become a backbone for much of nonlinear control
theory, and is currently a well developed theory with a
firm theoretical basis and such powerful tools for ISS
analysis, as Lyapunov and small-gain methods. Broad ap-
plications of ISS theory include design of robust controllers
and observers for nonlinear systems Arcak and Kokotović
(2001), analysis of large-scale networks Jiang et al. (1994);
Dashkovskiy et al. (2007, 2010), etc.

The impact of finite-dimensional ISS theory and the
need of proper tools for robust stability analysis of dis-
tributed parameter systems resulted in generalizations of
ISS concepts to broad classes of distributed parameter
systems, including partial differential equations (PDEs)
with distributed and boundary controls, nonlinear evo-
lution equations in Banach spaces with bounded and
unbounded input operators, etc. Techniques developed
within the infinite-dimensional ISS theory include char-
acterizations of ISS and ISS-like properties in terms of
weaker stability concepts Mironchenko and Wirth (2018),
Jacob et al. (2018b), constructions of ISS Lyapunov func-
tions for PDEs with distributed and boundary controls
Dashkovskiy and Mironchenko (2013); Mironchenko and
Ito (2015); Tanwani et al. (2018); Zheng and Zhu (2018),
non-coercive ISS Lyapunov functions Mironchenko and
Wirth (2018); Jacob et al. (2018a), efficient methods for
study of boundary control systems Zheng and Zhu (2017);
Jacob et al. (2018b); Karafyllis and Krstic (2019), transfer
functions Jayawardhana et al. (2008) etc.

One of the central topics of the mathematical control
theory is the analysis of coupled systems. Large-scale
nonlinear systems can be very complex, so that a direct
stability analysis of such systems is rarely possible. Small-
gain theorems allow us to overcome this obstacle by
ensuring ISS of an interconnected system, provided all
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subsystems are ISS and the interconnection structure,
described by gains, satisfies the small-gain condition.

1.1 Existing ISS small-gain results

There are two types of nonlinear small-gain theorems:
theorems in terms of trajectories and in terms of Lyapunov
functions. In small-gain theorems in the trajectory formu-
lation one assumes that each subsystem is ISS both w.r.t.
external inputs and internal inputs from other subsystems,
and the so-called internal gains of subsystems characteriz-
ing the influence of subsystems on each other are known.
The small-gain theorem states that the coupled system
is ISS provided the gains satisfy the small-gain condition.
First small-gain theorems of this type have been developed
in Jiang et al. (1994) for feedback couplings of two ODE
systems and in Dashkovskiy et al. (2007) for arbitrary
couplings of n ODE systems.

In Lyapunov small-gain theorems it is assumed that all
subsystems are ISS w.r.t. external and internal inputs
and the ISS Lyapunov functions for subsystems are given
together with the corresponding Lyapunov gains. If Lya-
punov gains satisfy the small-gain condition, then the
whole interconnection is ISS and moreover, an ISS Lya-
punov function for the overall system can be constructed.
For couplings of 2 systems such theorems have been shown
in Jiang et al. (1996) and this result has been extended
to couplings of n nonlinear ODE systems in Dashkovskiy
et al. (2010).

As was argued in Dashkovskiy and Mironchenko (2013),
ISS and integral ISS small-gain theorems in a Lyapunov
formulation can be extended to interconnections of n
infinite-dimensional systems without radical changes in
the formulation and proof technique, although in the
integral ISS case one should carefully choose the state
spaces for subsystems, see Mironchenko and Ito (2015).

The case of trajectory-based infinite-dimensional small-
gain theorems for couplings of n > 2 systems is signifi-
cantly more complicated since the proof of such theorems
in Dashkovskiy et al. (2007) is based on the fundamental
result that ISS of ODE systems is equivalent to uniform
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global stability (UGS) combined with the asymptotic gain
(AG) property shown in Sontag and Wang (1996). Such
a characterization is not valid for infinite-dimensional sys-
tems, as argued in Mironchenko and Wirth (2018) which
makes the proof of Dashkovskiy et al. (2007) not appli-
cable to infinite-dimensional systems without substantial
modifications.

In particular, considerable attention has been devoted to
small-gain theorems in terms of trajectories for time-delay
systems. The small-gain results for AG ∧ UGS property
for time-delay systems have been obtained in Polushin
et al. (2006) for couplings of 2 systems and in Tiwari et al.
(2009) and Polushin et al. (2013) for interconnections of
n systems. As AG ∧ UGS is (possibly) weaker than ISS
for time-delay systems, ISS small-gain theorems have not
been obtained in these works.

The first ISS small-gain theorems, applicable for time-
delay systems have been achieved in Karafyllis and Jiang
(2007), as a special case of a rather abstract result on
stability of couplings of two systems.

The obstacle that ISS is (at least potentially) not equiva-
lent to AG ∧ UGS, was overcome in Tiwari et al. (2012)
where ISS small-gain theorems for couplings of n ≥ 2 time-
delay systems have been obtained by using a Razumikhin-
type argument. In this approach the delayed state in the
right hand side of a time-delay system is treated as an
input to the system, which makes the time-delay system
a delay-free system with an additional input. However,
the transformation of time-delay systems to the delay-free
form is not always straightforward.

Recently in Bao et al. (2018) the small-gain theorems
for couplings of n input-to-output stable (IOS) evolution
equations in Banach spaces have been derived. As a special
case of these results, the authors obtain a small-gain the-
orem for networks of n ISS systems in the maximum for-
mulation. Application of small-gain theorems for stability
analysis of coupled parabolic-hyperbolic PDEs has been
performed in Karafyllis and Krstic (2018b). Small-gain
based boundary feedback design for global exponential
stabilization of 1-D semilinear parabolic PDEs has been
proposed in Karafyllis and Krstic (2018a).

1.2 Contribution

Our main result is the ISS small-gain theorem for feed-
back interconnections of n nonlinear heterogeneous sys-
tems whose components belong to a broad class of control
systems covering PDEs, time-delay systems, ODEs etc.

For the description of interconnections of control systems
we adopt an approach described in Karafyllis and Jiang
(2007).

Another key ingredient for our approach is a powerful char-
acterization of ISS obtained in Mironchenko and Wirth
(2018), which proved to be ultimately useful also in other
contexts, e.g. for non-coercive Lyapunov function theory
Mironchenko and Wirth (2018); Jacob et al. (2018a), study
of practical ISS Mironchenko (2019a), etc. To apply it to
our problem, we exploit bounded input uniform asymp-
totic gain (bUAG) property, which is more flexible in use
than standard uniform asymptotic gain (UAG) property.

The ISS small-gain theorem (Theorem 5.2) is achieved in
3 steps:

(i) UGS property of the interconnection (see Theo-
rem 5.1) is established using the methods developed
in Dashkovskiy et al. (2007).

(ii) bUAG property of the interconnection is verified (the
main technical step and the main difference to the
method of Dashkovskiy et al. (2007)).

(iii) We show that UGS ∧ bUAG is equivalent to ISS
(based on Mironchenko and Wirth (2018)), which
concludes the proof.

1.3 Relation to previous research

This paper is motivated by ISS small-gain theorems for
networks of n ∈ N ODE systems, reported in Dashkovskiy
et al. (2007), and recovers these results in the special case
of ODE systems.

As a particular application of our general small-gain theo-
rems one can obtain novel small-gain results for couplings
of n nonlinear time-delay systems. Unlike Polushin et al.
(2006); Tiwari et al. (2009); Polushin et al. (2013), we
obtain not only UGS ∧ AG (i.e. weak ISS) small-gain
results, but also ISS small-gain theorems. In contrast to
ISS small-gain theorems from Tiwari et al. (2012), our
approach is not time-delay specific, does not require a
transformation of retarded systems into delay-free ones
and is applicable to the summation formulation of the ISS
property.

In Bao et al. (2018) small-gain theorems for couplings of
n evolution equations in Banach spaces with Lipschitz
continuous nonlinearities have been derived, by using a
rather different proof technique, which is applicable if the
small-gain property is formulated in the so-called maxi-
mization formulation. Instead, we focus in this work on
the summation formulation of the ISS property and thus
the developments in Bao et al. (2018) are complementary
to this paper.

The approach which we use in this paper is very flexible
as it is valid for a broad class of infinite-dimensional
systems, independent on the type of the couplings between
subsystems (in-domain or boundary couplings) and can
be extended also to the maximum and semimaximum
formulations. Furthermore, the small-gain theorems in
the summation formulation presented in this paper are
tight (however, for the maximum formulation of the ISS
property the results in Bao et al. (2018) are stronger).
A counterpart for the weak ISS property, introduced in
Schmid and Zwart (2018) can be shown as well. More
on these topics can be found in the full journal paper
Mironchenko (2019b). In the same paper one can find
strengthenings of the characterizations of ISS property
shown in Mironchenko and Wirth (2018), using the notion
of bUAG and a related bounded inputs uniform limit
property.

1.4 Notation

In the following R+ := [0,∞). For arbitrary x, y ∈ Rn
define the relation ”≥” on Rn by: x ≥ y ⇔ xi ≥ yi, ∀i =
1, . . . , n. Further define Rn+ := {x ∈ Rn : x ≥ 0}.
By ” 6≥” we understand the logical negation of ”≥”, that
is x 6≥ y iff ∃i: xi < yi.

For a function v : R+ → X, where X is a certain set, we
define its restriction to the interval [s1, s2] by
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v[s1,s2](t) :=

{
v(t) if t ∈ [s1, s2],

0 else.

For a normed vector space U , we denote by PCb(R+, U)
the space of globally bounded piecewise continuous (right-
continuous) functions from R+ to U with the norm
‖u‖PCb(R+,U) = ‖u‖C(R+,U).

We use the following classes of comparison functions

K := {γ : R+ → R+ | γ is continuous, γ(0) = 0
and strictly increasing}

K∞ := {γ ∈ K | γ is unbounded}
L := {γ : R+ → R+ | γ is continuous and strictly

decreasing with lim
t→∞

γ(t) = 0}
KL := {β : R+ × R+ → R+ | β is continuous,

β(·, t) ∈ K, β(r, ·) ∈ L, ∀t ≥ 0, r > 0}

2. PROBLEM FORMULATION

2.1 Definition of control systems

First we define the concept of a (time-invariant) system:
Definition 2.1. Consider the triple Σ = (X,U , φ) con-
sisting of

(i) A normed linear space (X, ‖ · ‖X), called the state
space, endowed with the norm ‖ · ‖X .

(ii) A set of input values U , which is a nonempty subset
of a certain normed linear space.

(iii) A space of inputs U ⊂ {f : R+ → U} endowed with a
norm ‖ · ‖U which satisfies the following two axioms:

The axiom of shift invariance: for all u ∈ U and
all τ ≥ 0 the time shift u(· + τ) belongs to U with
‖u‖U ≥ ‖u(·+ τ)‖U .

The axiom of concatenation: for all u1, u2 ∈ U and
all t > 0 the concatenation of u1 and u2 at time t

u(τ) :=

{
u1(τ), if τ ∈ [0, t],

u2(τ − t), otherwise,
(1)

belongs to U .
(iv) A map φ : Dφ → X, Dφ ⊆ R+ × X × U (called

transition map), so that for all (x, u) ∈ X × U there
is a t > 0 so that [0, t]× {(x, u)} ⊂ Dφ.

The triple Σ is called a (control) system, if the following
properties hold:

(Σ1) The identity property: for every (x, u) ∈ X × U it
holds that φ(0, x, u) = x.

(Σ2) Causality: for every (t, x, u) ∈ R+×X×U , for every
ũ ∈ U , such that u(s) = ũ(s) for all s ∈ [0, t] it holds
that φ(t, x, u) = φ(t, x, ũ).

(Σ3) Continuity: for each (x, u) ∈ X × U the map t 7→
φ(t, x, u) is continuous.

(Σ4) The cocycle property: for all x ∈ X, u ∈ U , for all
t, h ≥ 0 so that [0, t + h] × {(x, u)} ⊂ Dφ, we have
φ(h, φ(t, x, u), u(t+ ·)) = φ(t+ h, x, u).

This class of systems encompasses control systems gener-
ated by ordinary differential equations (ODEs), switched
systems, time-delay systems, many classes of partial dif-
ferential equations (PDEs), important classes of boundary
control systems and many other systems.

We define several important properties of control systems:
Definition 2.2. We say that a system is forward com-
plete (FC), if Dφ = R+ × X × U , that is for every
(x, u) ∈ X × U and for all t ≥ 0 the value φ(t, x, u) ∈ X
is well-defined.

An important property of ordinary differential equations
with Lipschitz continuous right-hand sides states that if
the solution stays bounded over [0, t), then it can be
prolonged to [0, t+ε) for a certain ε > 0. Similar properties
have evolution equations in Banach spaces with bounded
control operators and Lipschitz continuous right hand
sides (Cazenave and Haraux, 1998, Theorem 4.3.4) and
many other classes of systems (Karafyllis and Jiang, 2011,
Chapter 1). The next property, adopted from (Karafyllis
and Jiang, 2011, Definition 1.4) formalizes this behavior
for general control systems.
Definition 2.3. We say that a system Σ satisfies the
boundedness-implies-continuation (BIC) property if for
each (x, u) ∈ X × U , there exists tmax ∈ (0,+∞], called a
maximal existence time, such that [0, tmax)×{(x, u)} ⊂ Dφ

and for all t ≥ tmax, it holds that (t, x, u) /∈ Dφ. In
addition, if tmax < +∞, then for every M > 0, there
exists t ∈ [0, tmax) with ‖φ(t, x, u)‖X > M .

2.2 Interconnections of control systems

Let (Xi, ‖ · ‖Xi), i = 1, . . . , n be normed linear spaces.
Define for each i = 1, . . . , n the normed linear space

X6=i := X1 × . . .×Xi−1 ×Xi+1 × . . .×Xn, (2)

endowed with the norm ‖x‖X 6=i
:=
(∑n

j=1, j 6=i ‖xj‖2Xj

)1/2
.

Let control systems Σi := (Xi, PCb(R+, X6=i) × U , φ̄i) be
given and assume that each Σi possesses a BIC prop-
erty. We call X6=i the space of internal input values and
PCb(R+, X6=i) the space of internal inputs. The norm on
PCb(R+, X6=i)× U we introduce as

‖(v, u)‖PCb(R+,X 6=i)×U :=
(∑
j 6=i

‖vj‖2PCb(R+,Xj)
+‖u‖2U

) 1
2

. (3)

Define also the normed linear space

X = X1 × . . .×Xn, ‖x‖X :=
( n∑
i=1

‖xi‖2Xi

)1/2
, (4)

and assume that there is a map φ = (φ1, . . . , φn) : Dφ →
X, defined over a certain domain Dφ ⊆ R+ × X × U so
that for each x = (x1, x2, . . . , xn) ∈ X, each u ∈ U and all
t ∈ R+ so that (t, x, u) ∈ Dφ and for every i = 1, . . . , n, it
holds that

φi(t, xi, u) = φ̄i
(
t, xi, (vi, u)

)
, with (5)

vi(t)=(φ1(t,x,u),...,φi−1(t,x,u),φi+1(t,x,u),...,φn(t,x,u)).

Assume further that Σ := (X,U , φ) is a control system
with the state space X, input space U and with a BIC
property. Then Σ is called a (feedback) interconnection of
systems Σ1, . . . ,Σn.

In other words, condition (5) means that if the modes
φj(·, x, u), j 6= i of the system Σ will be sent to Σi as
the internal inputs (together with an external input u),
and the initial state will be chosen as xi (the i-th mode of
x), then the resulting trajectory of the system Σi, which
is φ̄i(·, xi, v, u) will coincide with the trajectory of the i-th
mode of the system Σ on the interval of existence of φi.

Note that the trajectory of each Σi depends continuously
on time due to the continuity axiom. However, as the
space of continuous functions does not satisfy the con-
catenation property, we enlarge it to include the piecewise
continuous functions. This motivates the choice of the
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space PCb(R+, X6=i) × U as the input space for the i-th
subsystem.
Remark 2.4. This definition of feedback interconnections,
which we adopted from (Karafyllis and Jiang, 2007, Defi-
nition 3.3), does not depend on a particular type of control
systems which are coupled, and is applicable to large-scale
systems, consisting of heterogeneous components as PDEs,
time-delay systems, ODE systems etc. The definition also
applies to different kinds of interconnections, e.g. both for
in-domain and boundary interconnections of PDE systems.

Next we show how the couplings of evolution equations in
Banach spaces can be represented in our approach. Many
further classes of systems can be treated in a similar way.

2.3 Example: interconnections of evolution equations in
Banach spaces

Consider a system of the following form{
ẋi = Aixi + fi(x1, . . . , xn, u),
i = 1, . . . , n,

(6)

where the state space of the i-th subsystem Xi is a Banach
space and Ai with the domain of definition D(Ai) is the
generator of a C0-semigroup on Xi, i = 1, . . . , n. In the
sequel we assume that the set of input values U is a normed
linear space and that the input functions belong to the
space U := PCb(R+, U).

Define the state space X of the whole system (6) by (4).
We choose further the input space to the i-th subsystem
as (3).

For xi ∈ Xi, i = 1, . . . , n define x = (x1, . . . , xn)T ,
f(x, u) = (f1(x, u), . . . , fn(x, u))T . By A we denote the
diagonal operator A := diag(A1, . . . , An) with the domain
of definition D(A) = D(A1)×. . .×D(An). It is well-known
that A is the generator of a C0-semigroup on X.

With this notation the coupled system (6) takes the form

ẋ(t) = Ax(t) + f(x(t), u(t)), u(t) ∈ U. (7)

Assuming that f is Lipschitz continuous w.r.t. x guaran-
tees that the mild solutions of (7) exists and is unique
for every initial condition and for any admissible input.
Here mild solutions x : [0, τ ]→ X are the solutions of the
integral equation

x(t) = T (t)x(0) +

∫ t

0

T (t− s)f(x(s), u(s))ds, (8)

belonging to the space of continuous functions C([0, τ ], X)
for some τ > 0.

Under these assumptions the system (7) can be seen as
a well-defined interconnection of the systems Σi, i =
1, . . . , n, and each Σi is a well-defined system in the sense
of Definition 2.1. Moreover, by a variation of (Cazenave
and Haraux, 1998, Theorem 4.3.4) one can show that (8)
possesses the BIC property.

3. STABILITY NOTIONS

The main concept in this paper is:
Definition 3.1. A system Σ = (X,U , φ), where φ : Dφ →
X is called (uniformly) input-to-state stable (ISS), if
there exist β ∈ KL and γ ∈ K∞ ∪ {0} such that for all
(t, x, u) ∈ Dφ it holds that

‖φ(t, x, u)‖X ≤ β(‖x‖X , t) + γ(‖u‖U ). (9)

An important property implied by ISS is

Definition 3.2. A system Σ = (X,U , φ), where φ : Dφ →
X is called uniformly globally stable (UGS), if there exist
σ ∈ K∞, γ ∈ K∞ ∪ {0} such that for all (t, x, u) ∈ Dφ the
following holds:

‖φ(t, x, u)‖X ≤ σ(‖x‖X) + γ(‖u‖U ). (10)

Lemma 3.3. Let Σ = (X,U , φ) be an UGS control system.
If Σ has the BIC property, then Σ is forward complete.

Proof. The proof is an easy exercise and is omitted.

For forward complete systems we introduce the following
asymptotic properties
Definition 3.4. A forward complete system Σ = (X,U , φ)

(i) satisfies bounded input uniform asymptotic gain
(bUAG) property, if there exists a γ ∈ K∞ ∪ {0}
such that for all ε, r > 0 there is a τ = τ(ε, r) < ∞
s.t. for all u ∈ U : ‖u‖U ≤ r and all x ∈ X: ‖x‖X ≤ r

t ≥ τ ⇒ ‖φ(t, x, u)‖X ≤ ε+ γ(‖u‖U ). (11)

(ii) satisfies uniform asymptotic gain (UAG) property, if
there exists a γ ∈ K∞ ∪ {0} such that for all ε, r > 0
there is a τ = τ(ε, r) <∞ such that for all u ∈ U and
all x ∈ X: ‖x‖X ≤ r the implication (11) holds.

Both bUAG and UAG properties show that all trajectories
converge uniformly to the ball of radius γ(‖u‖U ) around
the origin as t → ∞. However, in bUAG property the
uniformity is only over the set of inputs with a given
magnitude, and in UAG property over all inputs.

The following lemma shows how bUAG property can be
’upgraded’ to the UAG and ISS properties.
Lemma 3.5. Let Σ = (X,U , φ) be a control system with a
BIC property. If Σ is UGS and bUAG, then Σ is forward
compete, UAG and ISS.

Proof. As Σ satisfies BIC property and is UGS, Σ is for-
ward complete by Lemma 3.3 (in particular, the property
bUAG assumed for Σ makes sense).

Pick arbitrary ε > 0, r > 0 and let τ and γ be as in
the formulation of the bUAG property. Let x ∈ Br and
let u ∈ U arbitrary. If ‖u‖U ≤ r, then (11) is the desired
estimate.

Let ‖u‖U > r. Hence it holds that ‖u‖U > ‖x‖X . Due to
uniform global stability of Σ, it holds for all t, x, u that

‖φ(t, x, u)‖X ≤ σ(‖x‖X) + γ(‖u‖U ),

where we assume that γ is same as in the definition of a
bUAG property (otherwise pick the maximum of both).
For ‖u‖U > ‖x‖X we obtain that

‖φ(t, x, u)‖X ≤ σ(‖u‖U ) + γ(‖u‖U ),

and thus for all x ∈ X, u ∈ U it holds that

t ≥ τ ⇒ ‖φ(t, x, u)‖X ≤ ε+ γ(‖u‖U ) + σ(‖u‖U ),

which shows UAG property with the asymptotic gain γ+σ.

As Σ is forward complete, UAG and UGS, the ISS property
of Σ follows by (Mironchenko and Wirth, 2018, Theorem
5).

4. COUPLED SYSTEMS AND GAIN OPERATORS

Consider n forward complete systems

Σi := (Xi, PCb(R+, X6=i)× U , φ̄i), i = 1, . . . , n,
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where all Xi, i = 1, . . . , n and U are normed linear spaces.

Stability properties introduced in Section 3 are defined
in terms of the norms of the whole input, and this is
not suitable for consideration of coupled systems, as we
are interested not only in the collective influence of all
inputs over a subsystem, but in the influence of particular
subsystems over a given subsystem.

Therefore we reformulate the ISS property for a subsystem
in the following form:
Lemma 4.1. A forward complete system Σi is ISS (in
summation formulation) if there exist γij , γi ∈ K ∪
{0}, j = 1, . . . , n and βi ∈ KL, such that for all
initial values xi ∈ Xi, all internal inputs w 6=i :=
(w1, . . . , wi−1, wi+1, . . . , wn) ∈ PCb(R+, X6=i), all external
inputs u ∈ U and all t ∈ R+ the following estimate holds:

‖φ̄i
(
t, xi, (w6=i, u)

)
‖Xi

≤ βi
(
‖xi‖Xi

, t
)

+
∑
j 6=i

γij

(
‖wj‖[0,t]

)
+ γi (‖u‖U ) . (12)

Proof. The argument is omitted due to page limits. Please
consult Mironchenko (2019b) for the proof.

The functions γij and γi in the statement of Lemma 4.1
are called (nonlinear) gains. For notational simplicity we
allow the case γij ≡ 0 and require γii ≡ 0 for all i.

Analogously, one can restate the definition of UGS:
Lemma 4.2. Σi is UGS (in summation formulation) if
and only if there exist γij , γi ∈ K ∪ {0} and σi ∈ KL,
such that for all initial values xi ∈ Xi, all internal inputs
w6=i := (w1, . . . , wi−1, wi+1, . . . , wn) ∈ PCb(R+, X6=i), all
u ∈ U and all t ∈ R+ the following inequality holds

‖φ̄i
(
t, xi, (w6=i, u)

)
‖Xi

≤ σi
(
‖xi‖Xi

)
+
∑
j 6=i

γij
(
‖wj‖[0,t]

)
+ γi (‖u‖U ) . (13)

We are going to collect all internal gains in the matrix
Γ := (γij)i,j=1,...,n, which we call the gain matrix. If the
gains are taken from the ISS restatement (12), then we
call the corresponding gain matrix ΓISS .

Now for a given gain matrix Γ define the gain operator
Γ⊕ : Rn+ → Rn+ for all s = (s1, . . . , sn)T ∈ Rn+ by

Γ⊕s :=
( n∑
j=1

γ1j(sj), . . . ,

n∑
j=1

γnj(sj)
)T
. (14)

Again, in order to emphasize that the gains are from the
ISS restatement (12), the corresponding gain operator will
be denoted by ΓISS⊕ .

As γij ∈ K∞ for all s1, s2 ∈ Rn+, we have the implication

s1 ≥ s2 ⇒ Γ⊕(s1) ≥ Γ⊕(s2), (15)

so that Γ⊕ defines a monotone (w.r.t. the partial order ≥
in Rn) map.

To guarantee stability of the interconnection Σ, the prop-
erties of the operators ΓUGS⊕ and ΓISS⊕ will be crucial.

For given αi ∈ K∞, i = 1, . . . , n define D : Rn+ → Rn+ for

any s = (s1, . . . , sn)T ∈ Rn+ by

D(s) := ((Id + α1)(s1), . . . , (Id + α1)(s1))T . (16)

A fundamental role will be played by the following opera-
tor conditions:

Definition 4.3. We say that a nonlinear operator A :
Rn+ → Rn+ satisfies the strong small-gain condition, if there
exists a mapping D as in (16), such that

(A ◦D)(s) 6≥ s, ∀s ∈ Rn+ \ {0}. (17)

5. SMALL-GAIN THEOREMS FOR CONTROL
SYSTEMS

In this section we show small-gain theorems for UGS and
ISS properties. We start with a small-gain theorem which
guarantees that a coupling of UGS systems is a UGS
system again provided the strong small-gain condition (17)
holds. This will in particular show that the coupled system
is forward complete.
Theorem 5.1 (UGS Small-gain theorem). Let Σi :=
(Xi, PCb(R+, X6=i) × U , φ̄i), i = 1, . . . , n be control sys-
tems, where all Xi, i = 1, . . . , n and U are normed linear
spaces. Assume that Σi, i = 1, . . . , n are forward complete
systems, satisfying the UGS estimates as in Lemma 4.2,
and that the interconnection Σ = (X,U , φ) is well-defined
and possesses the BIC property.

If ΓUGS⊕ satisfies the strong small gain condition (17), then
Σ is forward complete and UGS.

Proof. The argument is close to the proof of (Dashkovskiy
et al., 2007, Theorem 8) and is omitted. Please consult
Mironchenko (2019b) for the proof.

The main result of this paper is
Theorem 5.2 (ISS Small-gain theorem). Let Σi :=
(Xi, PCb(R+, X6=i) × U , φ̄i), i = 1, . . . , n be control sys-
tems, where all Xi, i = 1, . . . , n and U are normed linear
spaces. Assume that Σi, i = 1, . . . , n are forward complete
systems, satisfying the ISS estimates as in Lemma 4.1, and
that the interconnection Σ = (X,U , φ) is well-defined and
possesses the BIC property.

If ΓISS⊕ satisfies the strong small gain condition (17), then
Σ is ISS.

Proof. From the assumptions of the theorem it follows that
all Σi are UGS with the gain matrix ΓISS . As ΓISS⊕ satisfies
the strong small gain condition, Theorem 5.1 shows that
the coupled system Σ is forward complete and UGS.

The proof of the bUAG property of the interconnection
is omitted due to the space restrictions, see the journal
version of this paper Mironchenko (2019b) for details.

As Σ is UGS ∧ bUAG, Lemma 3.5 shows ISS of Σ.

Theorem 5.2 is very general and applicable for networks
of heterogeneous infinite-dimensional systems, consisting
of components belonging to different system classes, with
boundary and in-domain couplings, as long as these sys-
tems are well-defined and possess the BIC property. In
particular, our ISS small-gain theorem is applicable to the
interconnections of ISS ODE systems, interconnections of
evolution equation in Banach spaces and couplings of n
time-delay systems. In all these cases the interconnections
possess the BIC property, see Karafyllis and Jiang (2011).

Specialized to couplings of ODE systems, Theorem 5.2
boils down to the classic small-gain theorem shown in
Dashkovskiy et al. (2007). For couplings of n time-delay
systems Theorem 5.2 is new. Unlike Polushin et al. (2006);
Tiwari et al. (2009); Polushin et al. (2013), we obtain not
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only small-gain results for the weak ISS property (i.e. for
a combination of uniform global stability and asymptotic
gain properties), but also the ISS small-gain theorems.
Compared to ISS small-gain theorems obtained in Tiwari
et al. (2012), our approach provides an alternative way for
verification of ISS of a network of delay systems, which
does not require a transformation of retarded systems
into delay-free ones and is applicable to the summation
formulation of the ISS property.
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