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Abstract— We derive a small-gain theorem for infinite net-
works of input-to-state stable systems. It shows that the whole
interconnection is ISS provided that the gains, characterizing
the interconnection structure satisfy a version of a small-gain
condition, and some other natural conditions hold. For the
special case of networks with linear gains, we show that the
network is ISS provided that the gain operator is compact and
non-increasing at any nonzero element of a positive cone.
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I. INTRODUCTION

This work is a continuation of the paper [25], where the
small-gain stability criteria for couplings of n ∈ N infinite-
dimensional systems have been obtained. In this paper we
extend some of those results to couplings of countably many
systems.

Stability and control of infinite interconnections have
received significant attention during the last decades. In
particular, a large body of literature is devoted to spatially
invariant systems consisting of an infinite number of com-
ponents, interconnected with each other by means of the
same pattern [2], [7], [3], [5], etc. Recently a development
of stability criteria for infinite interconnections without spa-
tial invariance assumption has been initiated in [9], [10].
Methods, developed in [9], [10] are based on the input-
to-state stability paradigm, which is the backbone for a
great deal of the nonlinear control theory, including robust
stabilization, nonlinear observer design and analysis of large-
scale networks, see [23], [1], [31]. Powerful nonlinear small-
gain theorems, developed during the last two decades for
couplings of n ∈ N input-to-state stable ordinary differential
equations (ODEs) [16], [15], [12], [11], time-delay systems
[29], [35], [28], [36] and distributed parameter systems [8],
[26], [4], [25], are especially relevant in the context of
coupled systems. We refer to [25] for more details and
references.

Several new challenges appear in the case of infinite in-
terconnections. Even if each subsystem is finite-dimensional,
the whole network is infinite-dimensional which makes the
analysis of the ISS of the whole system much more in-
volved, as many results and criteria valid in ODE setting
become wrong for infinite-dimensional systems, see [24],
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[27]. In particular, a crucial step for the proof of small-
gain theorems for couplings of ODE systems in [12], is
the equivalence between ISS and a combination of global
stability and asymptotic gain properties, shown in [32], [33].
The characterizations from [32], [33] are not applicable to
infinite-dimensional systems, which significantly complicates
the proof of small-gain theorems in case if the overall cou-
pled system is infinite-dimensional. This obstacle has been
overcome: in [27], [24] novel criteria for ISS of distributed
parameter systems have been developed and in [25] they
have been used for stability analysis of couplings of a finite
number of infinite-dimensional systems. For a recent account
of ISS theory of infinite-dimensional systems we refer to
[27], [14], [21], [38], [34], [25] and references therein.

Another obstacle, arising in dealing with infinite networks
is in the fact that the gain operator, which collects all the
information about the internal gains, acts in the infinite-
dimensional space as well, in contrast to couplings of n ∈
N systems of arbitrary nature. We are going to treat this
problem in this paper.

A. Contribution

Our main results are ISS small-gain theorems (in tra-
jectory formulation) for well-posed interconnections of an
infinite number of heterogeneous control systems whose com-
ponents belong to a broad class of control systems covering
PDEs, time-delay systems, ODE etc.

First in Theorem 3.1 we state a nonlinear small-gain
theorem, showing ISS of an infinite interconnection under
assumptions that each subsystem is ISS and the gains satisfy
a certain condition, which is roughly speaking a monotone
invertibility of an operator I − Γ⊗, where Γ⊗ is the gain
operator. For finite interconnections this condition is implied
by the strong small-gain condition, see [12, Lemma 13].

Next we investigate infinite couplings with linear gains.
Using Krein-Rutman theorem we show that monotone in-
vertibility property of I−Γ⊗ holds, if Γ⊗ is compact and
non-increasing at any nonzero element of a positive cone.
We show by means of a counterexample that compactness
cannot be omitted.

B. Relations to other results

Stability of infinite interconnections has been studied in
[9], [10], where it was assumed that each subsystem of an
infinite network is finite-dimensional, input-to-state stable
and the ISS Lyapunov functions for all subsystems are known
together with so-called Lyapunov gains, characterizing the
interconnection structure of subsystems. On the basis of



this information it was shown that if the Lyapunov gains
satisfy a certain type of small-gain conditions, then the whole
interconnection is input-to-state stable.

The main differences in compare to the papers [9], [10] are
due to the fact that we consider couplings of general infinite-
dimensional systems and not only of ODEs, and secondly we
study small-gain theorems in terms of trajectories, whereas
in [9], [10] the small-gain theorems in terms of Lyapunov
functions have been studied. Secondly, the small-gain condi-
tions which we impose are different from those in [9], [10],
and it is an interesting problem for the future research to
find the relationships between these two conditions and in
this way to unify the small-gain results for infinite networks.

Recently in [4] the small-gain theorems for couplings
of n input-to-output stable (IOS) evolution equations in
Banach spaces have been derived. As a special case of
these results, the authors obtain a small-gain theorem for
networks of n ISS systems in the maximum formulation.
Application of small-gain theorems for stability analysis of
coupled parabolic-hyperbolic PDEs has been performed in
[20]. Small-gain based boundary feedback design for global
exponential stabilization of 1-D semilinear parabolic PDEs
has been proposed in [19].

C. Notation

In the following R+ := [0,∞).
For a function v : R+→ X , where X is a certain set, we

define its restriction to the interval [s1,s2] by

v[s1,s2](t) :=

{
v(t) if t ∈ [s1,s2],

0 else,

and by ‖v‖[0,t] we denote the supremum norm of v[0,t], i.e.
‖v‖[0,t] := sups∈[0,t] ‖v(s)‖X .

By `∞ we denote the Banach space of sequences {xi}i∈N,
xi ∈R so that there is M > 0 with |xi| ≤M for all i ∈N. By
`+∞ we denote the set of sequences x = {xi}i∈N ∈ `∞: xi ≥ 0
for all i ∈ N. `+∞ is a generating cone in `∞, which endows
`∞ with a natural order ≥.

By ”6≥” we understand the logical negation of ”≥”. In
particular, for x,y∈ `∞ the condition x 6≥ y means that ∃i∈N
so that xi < yi.

We use the following classes of comparison functions

K := {γ : R+→ R+ | γ(0) = 0, γ is continuous
and strictly increasing}

K∞ := {γ ∈K | γ is unbounded}
L := {γ : R+→ R+ | γ is continuous and strictly

decreasing with lim
t→∞

γ(t) = 0}
K L := {β : R+×R+→ R+ | β is continuous,

β (·, t) ∈K , β (r, ·) ∈L , ∀t,r ≥ 0}
II. PROBLEM FORMULATION

A. Definition of control systems

We define the concept of a (time-invariant) system in the
following way:

Definition 2.1: Consider the triple Σ = (X ,U ,φ) consist-
ing of

(i) A normed vector space (X ,‖·‖X ), called the state space,
endowed with the norm ‖ · ‖X .

(ii) A set of input values U , which is a nonempty subset of
a certain normed vector space.

(iii) A space of inputs U ⊂ { f : R+→U} endowed with a
norm ‖ · ‖U which satisfies the following two axioms:
The axiom of shift invariance: for all u ∈ U and
all τ ≥ 0 the time shift u(·+ τ) belongs to U with
‖u‖U ≥ ‖u(·+ τ)‖U .
The axiom of concatenation: for all u1,u2 ∈U and for
all t > 0 the concatenation of u1 and u2 at time t

u(τ) :=

{
u1(τ), if τ ∈ [0, t],
u2(τ− t), otherwise,

(1)

belongs to U .
(iv) A map φ : Dφ →X , Dφ ⊆R+×X×U (called transition

map), so that for all (x,u) ∈ X ×U there is a t > 0 so
that [0, t]×{(x,u)} ⊂ Dφ .

The triple Σ is called a (control) system, if the following
properties hold:
(Σ1) The identity property: for every (x,u) ∈ X×U it holds

that φ(0,x,u) = x.
(Σ2) Causality: for every (t,x,u) ∈ R+×X ×U , for every

ũ ∈ U , such that u(s) = ũ(s) for all s ∈ [0, t] it holds
that φ(t,x,u) = φ(t,x, ũ).

(Σ3) Continuity: for each (x,u) ∈ X ×U the map t 7→
φ(t,x,u) is continuous.

(Σ4) The cocycle property: for all x ∈ X , u ∈ U , for all
t,h ≥ 0 so that [0, t + h]× {(x,u)} ⊂ Dφ , we have
φ(h,φ(t,x,u),u(t + ·)) = φ(t +h,x,u).

This class of systems encompasses control systems generated
by ordinary differential equations (ODEs), switched systems,
time-delay systems, many classes of partial differential equa-
tions (PDEs), important classes of boundary control systems
and many other systems.

Next we define several important properties of control
systems:

Definition 2.2: We say that a control system (as intro-
duced in Definition 2.1) is forward complete (FC), if Dφ =
R+×X ×U , that is for every (x,u) ∈ X ×U and for all
t ≥ 0 the value φ(t,x,u) ∈ X is well-defined.

The main concept in this paper is:
Definition 2.3: A system Σ = (X ,U ,φ) is called (uni-

formly) input-to-state stable (ISS), if there exist β ∈K L
and γ ∈K such that for all (t,x,u) ∈ Dφ it holds that

‖φ(t,x,u)‖X ≤ β (‖x‖X , t)+ γ(‖u‖U ). (2)
An important property of ordinary differential equations

with Lipschitz continuous right-hand sides states that if the
solution stays bounded over [0, t), then it can be prolonged to
[0, t+ε) for a certain ε > 0. Similar properties have evolution
equations in Banach spaces with bounded control operators
and Lipschitz continuous right hand sides [6, Theorem 4.3.4]
and many other classes of systems [18, Chapter 1]. The next
property, adopted from [18, Definition 1.4] formalizes this
behavior for general control systems.



Definition 2.4: We say that a system Σ satisfies the
boundedness-implies-continuation (BIC) property if for each
(x,u) ∈ X×U , there exists tmax ∈ (0,+∞], called a maximal
existence time, such that [0, tmax)×{(x,u)} ⊂Dφ and for all
t ≥ tmax, it holds that (t,x,u) /∈ Dφ . In addition, if tmax <
+∞, then for every M > 0, there exists t ∈ [0, tmax) with
‖φ(t,x,u)‖X > M.

Lemma 2.5: Assume that Σ is ISS and possesses the BIC
property. Then Σ is forward complete.

B. Orders and monotonicity

Consider a normed linear space X . For two sets A,B⊂ X
we define A+B := {a+b : a∈A,b∈B}, −A := {−a : a∈A},
and R+ ·A := {r ·a : a∈A,r∈R+}. Given a topology, by intA
we denote the interior of A and by A its closure.

Definition 2.6: We say that K ⊂ X is a positive cone in X
if K∩ (−K) = {0}, R+K ⊂ K and K +K ⊂ K.

The cone K introduces the partial order relation ≤ on X
as x≤ y ⇔ y− x ∈ K.

Definition 2.7: Let X be a Banach space ordered by a cone
K. Then (X ,K) is called an ordered Banach space (OBS), if
the cone K is closed.

Definition 2.8: Let X be OBS, ordered via a cone K.
• The cone K is called total if K +(−K) = X and gener-

ating if K +(−K) = X .
• The norm in X is called monotone, if there for any

x1,x2 ∈ X : 0≤ x1 ≤ x2 it follows that ‖x1‖X ≤ ‖x2‖X .
Having defined an order on a set, it is natural to consider

maps on this set, which preserve the order in a certain sense.
Definition 2.9: Let X ,Y be ordered sets with positive

cones K and Q, respectively. The map f : X → Y is called:
(i) monotone, if x≤ y implies f (x)≤ f (y) for all x,y ∈ X .

(ii) positive if f (K)⊂ Q
(iii) strictly positive if f (K \{0})⊂ Q\{0}

C. Infinite Interconnections

Let (Xi,‖ · ‖Xi), i ∈ N be normed vector spaces endowed
with the corresponding norms. For all i ∈ N define the set
X6=i, consisting of all elements of the space X1× . . .×Xi−1×
Xi+1× . . . with the finite norm

‖x‖X6=i := sup
j∈N, j 6=i

{
‖x j‖X j

}
. (3)

It is easy to see that X6=i is a normed vector space and a
linear subspace in X1× . . .×Xi−1×Xi+1× . . ..

Let control systems Σi := (Xi,PC(R+,X6=i)×U , φ̄i), i∈N
be given and assume that each Σi possesses the BIC property.
We call X6=i the space of internal input values, PC(R+,X6=i)
the space of internal inputs. The norm on PC(R+,X6=i)×U
we define as

‖(v,u)‖PC(R+,X6=i)×U := max{sup
j∈N\{i}

‖v j‖PC(R+,X j),‖u‖U }. (4)

Define also the state space X for the whole system as a set of
all elements in X1×X2×X3× . . ., which have a finite norm

‖x‖X := sup
i∈N
‖xi‖Xi . (5)

Clearly, X is a normed vector space and a linear subspace
in X1 × X2 × X3 × . . .. Assume that there is a map φ =
(φ1, . . . ,φn, . . .) : Dφ → X , defined over a certain domain
Dφ ⊆R+×X×U so that for each x = (x1,x2, . . .)∈ X , each
u ∈ U and all t ∈ R+ so that (t,x,u) ∈ Dφ and for every
i ∈ N, it holds that

φi(t,xi,u) = φ̄i
(
t,xi,(vi,u)

)
, (6)

where

vi(t)= (φ1(t,x,u), . . . ,φi−1(t,x,u),φi+1(t,x,u),φi+2(t,x,u), . . .).

Assume further that Σ := (X ,U ,φ) is a control system with
the state space X , input space U and with a BIC property.
Then Σ is called a (feedback) interconnection of systems Σi,
i ∈ N.

In other words, condition (6) means that if the modes
φ j(·,x,u), j 6= i of the system Σ are sent to Σi as the internal
inputs (together with an external input u), and the initial
state is chosen as xi (the i-th mode of x), then the resulting
trajectory of the system Σi, which is φ̄i(·,xi,v,u) coincides
with the trajectory of the i-th mode of the system Σ on the
interval of existence of φi.

Remark 2.10: This definition of feedback interconnec-
tions, which we adopted from [17, Definition 3.3], does not
depend on a particular type of control systems which are
coupled, and is applicable to large-scale systems, consisting
of heterogeneous components as PDEs, time-delay systems,
ODE systems etc. The definition also applies to different
kinds of interconnections, e.g. both for in-domain and bound-
ary interconnections of PDE systems.

D. Stability properties for infinite couplings

In this subsection we consider a countable family of
forward complete systems Σi := (Xi,PC(R+,X6=i)×U , φ̄i),
i ∈ N, where all Xi, i ∈ N and U are normed linear spaces.

Stability properties introduced previously are defined in
terms of the norms of the whole input, and this is not suitable
for consideration of coupled systems, as we are interested not
only in the collective influence of all inputs over a subsystem,
but in the influence of particular subsystems over a given
subsystem.

Definition 2.11: We say that a forward complete system
Σi is input-to-state stable (ISS) in a semimaximum formu-
lation, if there exist γi j,γi ∈ K ∪ {0}, j ∈ N and βi ∈
K L , such that for all initial values xi ∈ Xi, all internal
inputs w6=i := (w1, . . . ,wi−1,wi+1,wi+2, . . .) ∈ PC(R+,X6=i),
all external inputs u ∈ U and all t ∈ R+ the following
estimate holds:

‖φ̄i
(
t,xi,(w6=i,u)

)
‖Xi

≤ βi

(
‖xi‖Xi

, t
)
+ sup

j∈N\{i}
{γi j
(
‖w j‖[0,t]

)
}+ γi

(
‖u‖U

)
. (7)

If all γi j, j ∈N are linear functions, we say that Σi is ISS
(in semimaximum formulation) with linear gains.
Above gain structure was called in [25] the semimaximum
formulation of the ISS property. There are also other formu-
lations of the ISS property, e.g. summation and maximum



formulations. These formulations are equivalent for finite
interconnections, but are not equivalent for infinite couplings.
The functions γi j and γi in the statement of Definition 2.11
are called (nonlinear) gains. For notational simplicity we
allow the case γi j ≡ 0 and require γii ≡ 0 for all i.

We are going to collect all the internal gains in the matrix
ΓISS := (γi j)i, j∈N, which we call the gain matrix.

Now for a given gain matrix ΓISS define for any s =
(s1,s2, . . .)

T ∈ `+∞ the operator ΓISS
⊗ : `+∞ → `+∞ by

Γ
ISS
⊗ (s) :=

(
sup
j∈N
{γ1 j(s j)},sup

j∈N
{γ2 j(s j)}, . . .

)T
. (8)

In what follows we assume that there exist β ∈K L and
γ, γ̄ ∈K so that for all r ∈ R+, t ≥ 0, i, j ∈ N it holds that

βi(r, t)≤ β (r, t), γi(r)≤ γ(r), γi j(r)≤ γ̄(r). (9)

The last condition guarantees that ΓISS
⊗ is well-defined.

Note that by the properties of γi j for s1,s2 ∈ `+∞ we have
the implication

s1 ≥ s2 ⇒ Γ
ISS
⊗ (s1)≥ Γ

ISS
⊗ (s2), (10)

so that ΓISS
⊗ defines a monotone (w.r.t. the order ≥ in `∞)

map.
In order to guarantee stability of the interconnection Σ,

the properties of the operator ΓISS
⊗ are central.

III. SMALL-GAIN THEOREMS FOR INFINITE
INTERCONNECTIONS

In this section we state a general small-gain theorem for
infinite interconnections.

Theorem 3.1 (ISS Small-gain theorem): Let Σi :=
(Xi,PC(R+,X6=i)×U , φ̄i), i ∈ N be control systems, where
all Xi, i ∈ N and U are normed linear spaces. Suppose that
Σi, i∈N are forward complete, satisfy the ISS estimates as in
Definition 2.11, and that the interconnection Σ = (X ,U ,φ)
is well-defined and possesses the BIC property.

Furthermore, let the following conditions hold:
(i) There are β ∈K L and γ, γ̄ ∈K so that (9) holds.

(ii) there exists a ξ ∈ K∞ such that for all w,v ∈ `+∞ the
inequality

(Id−Γ
ISS
⊗ )(w)≤ v (11)

implies ‖w‖`∞
≤ ξ (‖v‖`∞

).
Then Σ is ISS.

Proof: The proof follows closely the corresponding
proof for finite networks, see [25] and consists of three steps.
First one shows so-called uniform global stability (UGS) of
the coupled system, then one shows the uniform asymptotic
gain (UAG) property of the interconnection, and finally one
uses the equivalence between UGS ∧ UAG and ISS, which
is special case of much stronger characterizations of ISS,
shown in [27]. We omit the details due to space reasons.

Remark 3.2: The condition (ii) in the formulation of The-
orem 3.1 seems technical and the naming of the above result
as a small-gain theorem may look strange as no small-gain
condition is assumed. However, for finite networks the strong
small-gain condition implies (ii), as shown in [12, Lemma

13] and in Theorem 4.7 we will see that for infinite networks
with linear internal gains the condition (ii) will be implied
by the small-gain condition provided the operator ΓISS

⊗ is
compact.

Example 3.3 (Finite interconnections): Having n coupled
systems Σi, i = 1, . . . ,n, we can formally introduce the
systems Σi, i> n, which are disconnected from other systems,
have no inputs and are uniformly exponentially stable (e.g.
one could pick ẋi = −xi, i > n). Then ISS of the inter-
connection of all {Σi}i∈N is equivalent to ISS of the finite
coupling {Σi}n

i=1. Thus, we can treat finite interconnections
as a special case of our results on infinite couplings. The
infinite matrix ΓISS is in this case a block-diagonal matrix
with a nonzero n×n component in the upper left corner, and
with zero entries otherwise.

In the case of finite interconnections it is known that if
ΓISS
⊗ satisfies the small-gain condition, then the assumption

(ii) is fulfilled. The condition (i) always holds with σ :=
max{σ1, . . . ,σn}.

Thus, Theorem 3.1 is a natural extension of the small-gain
theorems for the finite interconnections of ISS systems, see
[25, Theorem 5.1] and [12, Theorem 8].

For infinite interconnections the condition (i) cannot be
dropped in the formulation of Theorem 3.1, and the condition
(ii) cannot be in general substituted to the strong small-gain
condition, as we analyze next.

Example 3.4 (Importance of the assumption (i)):
Consider the system

ẋi =−
1
i

xi, i ∈ N, (12)

as an interconnection of |N| xi-systems with xi(t) ∈ R, for
each i and with the state space `∞ of the whole system.
As there are no couplings between subsystems, the gain
matrix is ΓISS := 0 and the assumption (ii) of Theorem 3.1
trivially holds. However, as xi(t) = e−

1
i txi(0), we have that

βi(r, t) := e−
1
i tr, i ∈N, and clearly, there is no β ∈K L so

that βi(r, t)≤ β (r, t) for all r, t ∈ R+.
It is easy to check that for x0 := (1,1, . . .) it holds that

‖φ(t,x0)‖`∞
= 1 for all times t ≥ 0, and thus (12) is not

UGAS.

IV. INTERCONNECTIONS WITH LINEAR GAINS

A. Stability of discrete-time systems

Let X be a normed vector space and let A∈ L(X). Consider
a linear discrete-time system

x(k+1) = Ax(k), k ∈ N. (13)

The solution of this system at time k ∈N subject to an initial
condition x ∈ X we denote by φ(k,x) ∈ X .

Definition 4.1: Discrete-time system (13) is called uni-
formly globally exponentially stable (UGES), if there are
a ∈ (0,1) and M > 0 so that for each k ≥ 0 and all x ∈ X it
holds that

‖φ(k,x)‖X ≤Mak‖x‖X . (14)
We will use the famous theorem due to Krein and Rutman

[22].



Theorem 4.2 (Krein-Rutman): Let (X ,K) be an OBS with
a total positive cone K. Suppose that A ∈ L(X) is compact,
positive and has a positive spectral radius ρ(A). Then ρ(A)
is an eigenvalue of A and of the dual operator A∗ with
eigenvectors in K and in K∗, respectively.

Next we state a useful criterion for UGES of a discrete-
time system (13). The result seems to be quite classic, but
we give a short argument for the sake of completeness.

Proposition 4.3: Let (X ,K) be a normed vector space with
an order given by a positive cone K. Further, let A ∈ L(X)
be monotone with respect to the order in (X ,K).

Consider the following statements
(i) ρ(A)< 1,

(ii) Ak→ 0, for k→ ∞,
(iii) (13) is UGES
(iv) there exists a strictly positive operator P ∈ L(X) so that

A(I +P)x 6≥ x, ∀x ∈ K \{0}. (15)

(v) The following condition holds

Ax 6≥ x, ∀x ∈ K \{0}. (16)

Then the following holds:
(A) (i) ⇔ (ii) ⇔(iii) ⇒ (iv) ⇒ (v).
(B) Furthermore, if (X ,K) is an OBS, K is a total cone and

A ∈ L(X) is a compact positive operator with a positive
spectral radius ρ(A), then all above statements (i)-(v)
are equivalent.
Proof: (A). The equivalence between items (i), (ii), (iii)

is well-known, see e.g. [30, Theorem 2.1, p. 516].
Let (i) holds. Then there is ε > 0 so that ρ((1+ε)A)< 1

and by the equivalence between (i) and (iii), the system (13)
with Ã := (1+ε)A instead of A is UGES. Furthermore, Ã =
A(I + εI) is monotone and εI is a strictly positive operator.

Now, let (iv) does not hold. Then there is a certain x ∈ X
so that Ãx≥ x. But then in view of monotonicity of Ã with
respect to the order generated by K, we have that

Ãnx≥ Ãn−1x≥ . . .≥ x,

for all n ∈ N, and thus the solution of (13) governed by the
operator Ã does not converge to 0 for an initial condition x,
which contradicts to UGES of this system.

(iv) ⇒ (v). Assume that (v) does not hold, and thus there
is y ∈ K\{0} so that Ay≥ y. Then for any positive operator
P∈ L(X) it holds that (I+P)y= y+Py≥ y (we use here that
the order on X is linear) and as A is an increasing operator
it holds that A(I +P)y≥ Ay≥ y. This contradicts to (iv).

(B). Now assume that (X ,K) is an OBS, K is a total cone
and A ∈ L(X) is a compact operator with a positive spectral
radius ρ(A). We are going to show that the implication (v)
⇒ (i) holds. Assume that this is not the case, and (v) holds
but ρ(A) ≥ 1. By Krein-Rutman Theorem 4.2 it holds that
ρ(A) is an eigenvalue of A and the corresponding eigenvector
x ∈ K. Thus, Ax = ρ(A)x≥ x, which contradicts to (v).

Example 4.4: In this example we show that without ad-
ditional assumptions in the part (B) in Proposition 4.3, the
property (v) does not imply (iii). Consider a system over

the state space X := `∞, with an order given by the cone
X+ := `+∞ :

x(k+1) = cRx(k), k ∈ N, (17)

where c≥ 1 and the operator R is the right shift on X , that
is for x = (x1,x2,x3, . . .) it holds that Rx := (0,x1,x2,x3, . . .).

First let c := 1. It is easy to see that ‖Rx‖X = ‖x‖X , i.e.
R is an isometry, and thus ‖φ(k,x)‖X = ‖x‖X for all k ∈ N,
and hence (17) is not asymptotically stable. Furthermore, R
is a positive operator over (`∞, `

+
∞).

Consider an arbitrary strictly positive diagonal operator
D : X → X , defined for x := (x1,x2, . . .) ∈ X by Dx :=
(a1x1,a2x2, . . .), where {ai}i∈N is a sequence of positive
numbers with ai ≤M for certain M > 0 and all i ∈ N.

Let x = (x1,x2, . . .)∈ X+\{0} and let i be the index of the
first nonzero component of x (which is well-defined and finite
as x ∈ X+ and x 6= 0). Then the components of R(I +D)x
with indices j = 1, . . . , i are equal to 0, which shows that
R(I +D)x 6≥ x.

In this example only one condition of Proposition 4.3, part
(B) is not satisfied: R is not a compact operator, as the image
of the unit ball is clearly not relatively compact. All other
assumptions are fulfilled.

Finally, note (see [13, Example B.7]) that σ(R) = B(0,1),
where B(0,1) is an open ball of radius 1 with the center
at 0 in the complex plane and at the same time the point
spectrum of R is empty.

Analyzing as above (13) with c > 1, we obtain by a
completely similar argument an exponentially unstable sys-
tem with A := cR, which satisfies condition (iv) in Proposi-
tion 4.3.

Stability of (13) has the following important consequence:
Proposition 4.5: Assume that X is a Banach space with

a closed cone and let A ∈ L(X) be a positive operator with
ρ(A)< 1. Then the operator I−A is invertible and positive.

In particular, if (I−A)x ≤ y for certain x,y ∈ X , then it
holds also x≤ (I−A)−1y.

Proof: As X is a Banach space and ρ(A) < 1, the
operator A is invertible and the inverse is given by the
Neumann series: (I−A)−1 = ∑

∞
k=0 Ak, see e.g. [37, p. 69].

Pick any x ∈ K. As A is a positive operator, Ak is positive
as well for any k ∈N and as X is a linear space, it holds that
zn := ∑

n
k=0 Akx ∈K. Furthermore, as the cone K is closed we

have (I−A)−1x = limn→∞ zn ∈ K.

B. Small-gain theorems: case of linear gains

Assume as in Section III, that Σi, i ∈ N are forward
complete systems, satisfying the ISS estimates as in Def-
inition 2.11, and that the interconnection Σ = (X ,U ,φ) is
well-defined and possesses the BIC property. Furthermore,
we assume that all internal gains γi j are linear functions. This
enables us to use the results from Section IV-A to obtain
a more usable small-gain criterion for ISS of the coupled
system.

Denote by RN×N
+ the set of infinite matrices M =

(mi j)i, j∈N, mi j ∈R+. The next lemma gives a simple criterion
of well-posedness of the linear operator Γ⊗.



Lemma 4.6: Γ⊗ is a well-defined positive linear bounded
operator if and only if Γ ∈RN×N

+ with supi, j∈N γi j =: C < ∞.
In this case ‖Γ⊗‖L(X) =C.

Proof: Clearly, Γ⊗ is a linear operator. For each j ∈N
it holds that Γ⊗e j = (γ1 j, . . . ,γn j, . . .)

T . Clearly,

‖Γ⊗‖L(X)= sup
‖x‖`∞=1

‖Γ⊗x‖`∞
≥ sup

j∈N
‖Γ⊗e j‖`∞

= sup
j∈N

sup
i∈N
|γi j|=C

On the other hand,

‖Γ⊗‖L(X) = sup
‖x‖`∞=1

sup
i∈N

sup
j∈N
|γi jx j| ≤C sup

‖x‖`∞=1
sup
j∈N
|x j|=C.

For a well-defined operator Γ⊗ the positivity is clearly
equivalent to the fact that Γ ∈ RN×N

+ .
Net we present a criterion for ISS of countable networks

with linear internal gains.
Theorem 4.7 (ISS small-gain theorem: linear gains): Let

Σi := (Xi,PC(R+,X6=i)×U , φ̄i), i ∈ N be control systems,
where all Xi, i∈N and U are normed linear spaces. Assume
that Σi, i ∈ N are forward complete systems, satisfying the
ISS estimates as in Definition 2.11 with linear internal gains
γi j, i, j ∈ N, and that the interconnection Σ = (X ,U ,φ) is
well-defined and possesses the BIC property. Furthermore,
let the following conditions hold:

(i) There is a β ∈K L and γ ∈K so that (9) holds.
(ii) ΓISS

⊗ is a compact operator.
(iii) ΓISS

⊗ satisfies the small-gain condition
A(s) 6≥ s, ∀s ∈ `+∞ \{0}.

Then Σ is ISS.
Proof: To show the claim we need merely to show

that the assumption (ii) of Theorem 3.1 holds. The operator
ΓISS
⊗ ∈ L(X) acts on `∞, which we endow with a cone `+∞ .

It is well-known that `∞ is a Banach space, and `+∞ is a
closed and generating cone in `∞. Hence, `∞ is an ordered
Banach space with a total cone. As ΓISS

⊗ is a compact positive
operator, Proposition 4.3 implies that the assumption (iii) is
equivalent to the fact that ρ(ΓISS

⊗ )< 1. In turn, this implies by
Proposition 4.5 that for all w,v∈ `+∞ so that (Id−ΓISS

⊗ )(w)≤ v
it follows that w≤ (Id−ΓISS

⊗ )−1v, and as the norm in `∞ is
monotone w.r.t. the order, this implies that

‖w‖`∞
≤ ‖(Id−Γ

ISS
⊗ )−1‖‖v‖`∞

,

which verifies the assumption (ii) of Theorem 3.1 with
ξ (r) = ‖(Id−ΓISS

⊗ )−1‖r, r ∈R+. Now, application of Theo-
rem 3.1 shows the claim.

V. CONCLUSION AND OUTLOOK

We have shown ISS small-gain theorems for general
interconnections with nonlinear gains (Theorem 3.1) as well
as with linear gains (Theorem 4.7). These theorems en-
sure input-to-state stability of countably infinite networks
consisting of ISS components. For the future research it
is interest to obtain more checkable conditions for ISS of
infinite networks in the case of nonlinear internal gains as
well as to compare the small-gain conditions exploited in this
paper with the so-called robust strong small-gain condition
introduced in [9] for establishing a Lyapunov small-gain
theorem for countably infinite couplings.
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