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Abstract: Motivated by a paradigm shift towards a hyper-connected world, we develop a
computationally tractable small-gain theorem for a network of infinitely many subsystems,
termed as infinite networks. The proposed small-gain theorem addresses exponential input-to-
state stability with respect to closed sets, which enables us to analyze diverse stability problems
in a unified manner. The small-gain condition, expressed in terms of the spectral radius of a gain
operator collecting all the information about the internal Lyapunov gains, can be numerically
checked efficiently for a large class of systems. To demonstrate broad applicability of our small-
gain theorem, we apply it to the stability analysis of infinite time-varying networks, to consensus
of infinite-agent systems, and to the design of distributed observers for infinite networks.
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1. INTRODUCTION

Emerging technologies such as the Internet of Things,
Cloud computing, 5G communication system and so on
are expected to encompass almost every aspect of our
lives and to generate a paradigm shift towards a hyper-
connected world composed of smart networked systems.
Such advances provide us with much more autonomy
and flexibility at the price of increasing complexity and
uncertainty. Examples of such smart networked systems
include smart grids, connected vehicles, swarm robotics,
and smart cities in which the participating agents may
be plugged into and out from the network at any time.
Therefore, the sizes of such large networks are unknown
and possibly time-varying.

Most of these smart applications are safety-critical. This
calls for a rigorous analysis and synthesis of such systems.
However, standard tools for stability analysis/stabilization
of control systems do not scale well to these large-scale
complex systems (Sarkar et al., 2018; Sarkar et al., 2018;
Bamieh et al., 2012; Jovanović and Bamieh, 2005). A
promising way to address this critical issue is to over-
approximate a finite but very large network by an infinite
network, and control this over-approximated system; see
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e.g. (Curtain et al., 2009; Jovanović and Bamieh, 2005;
D’Andrea and Dullerud, 2003; Bamieh et al., 2002).

Current results on stability analysis and control of infinite
networks are mostly concerned with spatially invariant
and/or linear systems (Curtain et al., 2009; D’Andrea and
Dullerud, 2003; Bamieh et al., 2002). A striking progress
in the infinite-dimensional input-to-state stability (ISS)
theory (Dashkovskiy and Mironchenko, 2013; Mazenc and
Prieur, 2011; Mironchenko and Wirth, 2018; Karafyllis
and Krstic, 2016; Jacob et al., 2018) (see (Mironchenko
and Prieur, 2019) for a recent survey on this topic)
together with the powerful nonlinear small-gain criteria
for stability analysis of finite networks (Jiang et al., 1996;
Dashkovskiy et al., 2007, 2010) create a foundation for the
development of stability conditions for infinite networks of
general nature without assuming linearity and/or spatial
invariance of the systems.

In (Dashkovskiy and Pavlichkov, 2020) it is shown that
a countably infinite network of continuous-time input-
to-state stable systems is ISS, provided that the gain
functions capturing the influence of subsystems on each
other are all less than identity, which is a very conservative
condition. In (Dashkovskiy et al., 2019) it was shown
that classic max-form strong small-gain conditions (SGCs)
developed for finite networks in (Dashkovskiy et al., 2010)
do not ensure stability of infinite networks, even for
linear ones. To address this issue, more restrictive robust
strong SGCs are developed in (Dashkovskiy et al., 2019).
The small-gain theorems in (Dashkovskiy and Pavlichkov,



2020; Dashkovskiy et al., 2019) are formulated in terms of
ISS Lyapunov functions and a trajectory-based small-gain
theorem for infinite networks is provided in (Mironchenko,
2019).

In contrast to that, for networks consisting of exponen-
tially ISS systems, possessing exponential ISS Lyapunov
functions with linear gains, it was shown in (Kawan et al.,
2019) that if the spectral radius of the gain operator is
less than one, then the whole network is exponentially
ISS and there is a coercive exponentially ISS Lyapunov
function for the whole system. This result provides a
complete and nontrivial generalization of (Dashkovskiy
et al., 2011, Prop. 3.3) from finite networks to infinite
networks. It deeply relies on the spectral theory of positive
operators (Karlin, 1959). In (Kawan et al., 2019), the
effectiveness of the main result has been demonstrated by
application to nonlinear spatially invariant systems with
sector nonlinearities and to the stability analysis of a road
traffic network.

All of the above small-gain theorems for infinite networks
address ISS with respect to the origin. A more general no-
tion of the input-to-state stability with respect to a closed
set covers several further stability problems such as incre-
mental stability, robust consensus/synchronization, ISS of
time-varying systems as well as variants of input-to-output
stability in a unified and generalized manner (Noroozi
et al., 2018). In this paper, we extend the main result of
our recent work (Kawan et al., 2019) to ISS of infinite
networks with respect to closed sets. This modification
widely extends the applicability of the small-gain result
to several control theoretic problems including the stabil-
ity analysis of infinite time-varying networks, consensus
of infinite agent systems, and the design of distributed
observers for infinite networks which are all studied in this
work.

Due to the page limitation, we omit all the proofs.

2. PRELIMINARIES

2.1 Notation

We write N = {1, 2, 3, . . .} for the set of positive integers,
R denotes the reals and R+ := {t ∈ R : t ≥ 0} the
nonnegative reals. For vector norms on finite- and infinite-
dimensional vector spaces, we write | · |. For associated
operator norms, we use the notation ‖ · ‖. We write A>

for the transpose of a matrix A (which can be finite or
infinite). We use Greek letters for infinite matrices and
Latin ones for finite matrices. Elements of Rn are by
default regarded as column vectors and we write x> · y
for the Euclidean inner product of two vectors x, y ∈ Rn.
We use the same notation for dot products of vectors with
infinitely many components. By `p, p ∈ [1,∞], we denote
the Banach space of all real sequences x = (xi)i∈N with
finite `p-norm |x|p < ∞, where |x|p = (

∑∞
i=1 |xi|p)1/p for

p < ∞ and |x|∞ = supi∈N |xi|. We write `p+ := {x =
(xi)i∈N ∈ `p : xi ≥ 0, ∀i ∈ N}.
A more general class of `p-spaces is defined as follows. Let
p ∈ [1,∞), let (ni)i∈N be a sequence of positive integers
and fix a norm | · |i on Rni for every i ∈ N. Then

`p(N, (ni)) :=
{
x = (xi)i∈N : xi ∈ Rni ,

∞∑
i=1

|xi|pi <∞
}

equipped with the norm

|x|p :=
( ∞∑
i=1

|xi|pi
) 1

p

is a separable Banach space (see e.g. (Dunford and
Schwartz, 1957)). Usually, we drop the index i from the
norm. If all ni are identical, say ni ≡ n, we also write
`p(N, n). Similarly, `∞(N, (ni)) can be defined.

We write L∞(R+,Rn) for the Banach space of essentially
bounded measurable functions from R+ to Rn. If X is a
Banach space, we write r(T ) for the spectral radius of
a bounded linear operator T : X → X. The notation
C0(X,Y ) stands for the set of all continuous mappings
f : X → Y between metric spaces X and Y . Given a
metric space X, we write intA for the interior of a subset
A ⊂ X. The right upper (resp. lower) Dini derivative of a
function γ : R → R at t ∈ R is denoted by D+γ(t) (resp.
D+γ(t)); see (Kawan et al., 2019) for their definitions.
We will consider K,K∞, and KL comparison functions,
see (Khalil, 2002, Chapter 4.4) for definitions.

2.2 Infinite interconnections

We study interconnections of countably many systems,
each given by a finite-dimensional ordinary differential
equation (ODE). Using N as the index set (by default),
the ith subsystem is written as

Σi : ẋi = fi(xi, x̄, ui). (1)

The family (Σi)i∈N comes together with a number p ∈
[1,∞] and sequences (ni)i∈N, (mi)i∈N of positive integers
so that the following holds with X := `p(N, (ni)) for a
specified sequence of norms on the spaces Rni :

• The state vector xi of Σi is an element of Rni .
• The internal input vector x̄ is an element of X.
• The external input vector ui is an element of Rmi .
• The right-hand side fi : Rni × X × Rmi → Rni is a

continuous function.
• Unique local solutions of the ODE (1) exist for all

initial states xi0 ∈ Rni and all continuous x̄(·) and lo-
cally essentially bounded ui(·) (which are regarded as
time-dependent inputs). We denote the corresponding
solution by φi(·, xi0, (x̄, ui)).

The values of the function fi can be independent of certain
components of the input vector x̄. We write Ii for the set
of indices j ∈ N so that fi(xi, x̄, ui) is non-constant with
respect to the component xj of x̄, and w.l.o.g. we assume
that i /∈ Ii (note that fi depends on xi explicitly).

In the ODE (1), we consider x̄(·) as an internal input and
ui(·) as an external input. The interpretation is that the
subsystem Σi is affected by a certain set of neighbors,
indexed by Ii, and its external input. We note that the
set Ii does not have to be finite, implying that subsystem
i can be connected to infinitely many other subsystems.

To define the interconnection of the subsystems Σi,
we consider the state vector x = (xi)i∈N ∈ X =
`p(N, (ni)), the input vector u = (ui)i∈N ∈ `q(N, (mi))
for some q ∈ [1,∞] and the right-hand side f(x, u) :=
(f1(x1, x̄, u1), f2(x2, x̄, u2), . . .). The interconnection is
then written as

Σ : ẋ = f(x, u). (2)
The class of admissible control functions is defined as

U :=
{
u : R+ → U : u is strongly measurable and



essentially bounded
}
, (3)

and we equip this space with the sup-norm

|u|q,∞ := ess sup
t≥0

|u(t)|q.

A continuous mapping ξ : I → X, defined on an interval
I = [0, T∗) with T∗ ∈ (0,∞], is called a solution of the
infinite-dimensional ODE (2) with initial value x0 ∈ X for
the external input u ∈ U provided that the two conditions

f(ξ(t), u(t)) ∈ X and ξ(t) = x0 +

∫ t

0

f(ξ(s), u(s))ds

hold for all t ∈ I, where the integral is the Bochner
integral, see e.g. (Arendt et al., 2011).

If for each x0 ∈ X and u ∈ U a unique (local) solution
exists, we say that the system is well-posed and write
φ(·, x0, u) for any such solution. As usual, we consider the
maximal extension of φ(·, x0, u) and write Imax(x0, u) for
its interval of existence. We say that the system is forward
complete if Imax(x0, u) = R+ for all (x0, u) ∈ X × U .

We note that (Kawan et al., 2019, Thm. 3.2) provides
sufficient conditions for well-posedness of Σ.

2.3 Distances in sequence spaces

Let X = `p(N, (ni)) for a certain p ∈ [1,∞). Consider
nonempty closed sets Ai ⊂ Rni , i ∈ N. For each xi ∈ Rni

we define the distance of xi to the set Ai by

|xi|Ai
:= inf

yi∈Ai

|xi − yi|.

Now we define the set

A :={x ∈ X : xi ∈ Ai, i ∈ N}=X ∩ (A1 ×A2 × . . .).(4)

If A 6= ∅, we define the distance from any x ∈ X to A as

|x|A := inf
y∈A
|x− y|p = inf

y∈A

( ∞∑
i=1

|xi − yi|p
) 1

p

. (5)

Lemma 2.1. Assume that A defined by (4) is nonempty.
Then for any x ∈ X it holds that

∞∑
i=1

|xi|pAi
<∞, and |x|A =

( ∞∑
i=1

|xi|pAi

) 1
p

.

3. EXPONENTIAL INPUT-TO-STATE STABILITY

Having a well-posed interconnection (2) with state space
X = `p(N, (ni)) and external input space U = `q(N, (mi))
for p, q ∈ [1,∞), we aim to study the stability of the
interconnected system with respect to a closed set A ⊂ X.
For this purpose, we introduce the notions of input-to-
state stability and exponential input-to-state stability with
respect to a set A.

Definition 3.1. Given a nonempty closed set A ⊂ X, the
system Σ is called

• input-to-state stable (ISS) w.r.t. A if it is forward
complete and there are functions β ∈ KL and γ ∈ K
such that for any initial state x0 ∈ X and any u ∈ U
the corresponding solution satisfies

|φ(t, x0, u)|A ≤ β(|x0|A, t) + γ(|u|q,∞) for all t ≥ 0.

• exponentially input-to-state stable (eISS) w.r.t. A if
it is ISS w.r.t. A with a KL-function β of the form
β(t, r) = Me−atr for some a,M > 0. 2

For any function V : X → R, which is continuous on
X\A, we define the orbital derivative at x ∈ X\A for the
external input u ∈ U by

D+Vu(x) := D+V (φ(t, x, u))|t=0,

where the right-hand side is the right upper Dini derivative
of the function t 7→ V (φ(t, x, u)), evaluated at t = 0.

Exponential input-to-state stability is implied by the ex-
istence of a (power-bounded) exponential ISS Lyapunov
function, which we define in a dissipative form as follows.

Definition 3.2. Let a nonempty closed setA ⊂ X be given.
A function V : X → R+, which is continuous on X\A, is
called a (power-bounded) eISS Lyapunov function for Σ
w.r.t. A if there are constants ω, ω, b, κ > 0 and γ ∈ K∞
such that

ω|x|bA ≤ V (x) ≤ ω|x|bA ∀x ∈ X, (6a)

D+Vu(x) ≤ −κV (x) + γ(|u|q,∞) ∀x ∈ X\A,∀u ∈ U .
(6b)

The function γ is sometimes called a Lyapunov gain. 2

Proposition 3.3. If there exists an eISS Lyapunov function
for Σ w.r.t. A, then Σ is eISS w.r.t. A. 2

The proof follows similar steps as those in the proof of
Proposition 4.4 in (Kawan et al., 2019).

4. THE GAIN OPERATOR AND ITS PROPERTIES

Our main objective is to develop conditions for input-to-
state stability of the interconnection of countably many
subsystems (1), depending on the ISS properties of the
subsystems and the interconnection structure. Throughout
this section, we assume that the infinite interconnection Σ
is well-posed with state space X = `p(N, (ni)) and external
input space U = `q(N, (mi)) for some p, q ∈ [1,∞).

4.1 Assumptions on the subsystems

We assume that each subsystem Σi, given by (1), is
exponentially ISS w.r.t. a closed set Ai and there exist
continuous eISS Lyapunov functions w.r.t. Ai with linear
gains for all Σi. The following assumption formulates the
eISS property for the subsystems.

Assumption 4.1. For each i ∈ N there exist a nonempty
closed set Ai ⊂ Rni and Vi ∈ C0(Rni ,R+), satisfying for
certain p, q ∈ [1,∞) the following properties.

• There are constants αi, αi > 0 so that for all xi ∈ Rni

αi|xi|
p
Ai
≤ Vi(xi) ≤ αi|xi|pAi

. (7)

• There are constants λi, γij (j ∈ Ii), γiu > 0 so
that the following holds: for each xi ∈ Rni\Ai, ui ∈
L∞(R+,Rmi), each internal input x̄ ∈ C0(R+, X)
and for almost all t in the maximal interval of ex-
istence of φi(t) := φi(t, xi, (x̄, ui)) one has

D+(Vi ◦ φi)(t) ≤ −λiVi(φi(t)) +
∑
j∈Ii

γijVj(xj(t))

+ γiu|ui(t)|q, (8)

where we denote the components of x̄ by xj(·). 1
• For all t in the maximal interval of the existence of
φi one has D+(Vi ◦ φi)(t) <∞. 2

1 At this point, the right-hand side of (8) is not necessarily finite.
However, this requirement is not needed here.



Note that if Vi is continuously differentiable, Assump-
tion 4.1 can be written in a simpler form, see (Kawan
et al., 2019) for details.

We furthermore assume that the following uniformity
conditions hold for the constants introduced above.

Assumption 4.2. (a) There are constants α, α > 0 so that
for all i ∈ N

α ≤ αi ≤ αi ≤ α. (9)

(b) There is a constant λ > 0 so that for all i ∈ N
λ ≤ λi. (10)

(c) There is a constant γu > 0 so that for all i ∈ N
γiu ≤ γu. (11)

2

In order to formulate a small-gain condition, we further
introduce the following infinite nonnegative matrices by
collecting the coefficients from (8)

Λ := diag(λ1, λ2, λ3, . . .), Γ := (γij)i,j∈N,

where we put γij := 0 whenever j /∈ Ii. We also introduce
the infinite matrix

Ψ := Λ−1Γ = (ψij)i,j∈N, ψij =
γij
λi
. (12)

We make the following assumption, which is equivalent to
Γ being a bounded operator from `1 to `1.

Assumption 4.3. The matrix Γ = (γij) satisfies

‖Γ‖1,1 = sup
j∈N

∞∑
i=1

γij <∞, (13)

where the double index on the left-hand side indicates that
we consider the operator norm induced by the `1-norm
both on the domain and codomain of the operator Γ. 2

Under Assumptions 4.3 and 4.2(b) (see also (Kawan et al.,
2019, Lem. V.7)), the matrix Ψ acts as a linear operator
on `1 by

(Ψx)i =

∞∑
j=1

ψijxj for all i ∈ N.

We call Ψ : `1 → `1 the gain operator associated with the
decay rates λi and coefficients γij .

Moreover, clearly Ψ is a positive operator with respect to
the standard positive cone `1+ := {x = (x1, x2, . . .) ∈ `1 :
xi ≥ 0, ∀i ∈ N} in `1. Also recall from (Kawan et al.,
2019, Lem. V.10) the following lemma which uses positive
operator theory to deduce the existence of a positive vector
µ that can be used to construct an eISS Lyapunov function
for the interconnected system.

Lemma 4.4. Assume that r(Ψ) < 1 and that there exists
a constant λ > 0 such that λi ≤ λ for all i ∈ N. Then the
following statements hold:

(i) There exist a vector µ = (µi)i∈N ∈ int `∞+ and a
constant λ∞ > 0 so that

[µ>(−Λ + Γ)]i
µi

≤ −λ∞ for all i ∈ N. (14)

(ii) For every ρ > 0 we can choose the vector µ and the
constant λ∞ so that

λ∞ ≥ (1− r(Ψ))λ− ρ. (15)

2

5. SMALL-GAIN THEOREM

In this section, we prove that the interconnected system Σ
is exponentially ISS under the given assumptions, provided
that the spectral radius of the gain operator satisfies
r(Ψ) < 1. By Proposition 3.3, our objective is reduced to
finding an eISS Lyapunov function for the interconnection
Σ, which is accomplished by the following small-gain
theorem, which is the main result of the paper.

Theorem 5.1. Consider the infinite interconnection Σ,
composed of the subsystems Σi, i ∈ N, with fixed p, q ∈
[1,∞). Suppose that the following hold.

(i) Σ is well-posed as a system with state space X =
`p(N, (ni)), space of input values U = `q(N, (mi)),
and the external input space U , as defined in (3).

(ii) Each Σi admits a continuous eISS Lyapunov function
Vi w.r.t. a nonempty closed set Ai ⊂ Rni so that
Assumptions 4.1 and 4.2 are satisfied.

(iii) The operator Γ : `1 → `1 is bounded, i.e., Assumption
4.3 holds.

(iv) The spectral radius of Ψ satisfies r(Ψ) < 1.

Consider the set A := X ∩ (A1×A2× . . .). Then Σ admits
an eISS Lyapunov function w.r.t. A of the form

V (x) =

∞∑
i=1

µiVi(xi), V : X → R+ (16)

for some µ = (µi)i∈N ∈ `∞ satisfying µ ≤ µi ≤ µ with
constants µ, µ > 0. In particular, the function V has the
following properties.

(a) V is continuous on X\A.
(b) There is a λ∞ > 0 so that for all x0 ∈ X\A and u ∈ U

D+Vu(x0) ≤ −λ∞V (x0) + µγu|u|qq,∞.
(c) For all x ∈ X the following inequalities hold:

µα|x|pA ≤ V (x) ≤ µα|x|pA. (17)

In particular, Σ is eISS w.r.t. A. 2

The proof follows closely the proof of (Kawan et al., 2019,
Thm. VI.1) and is based on the application of Lemma 4.4.
Hence, it is omitted.

6. APPLICATIONS

In this section, we study three applications: stability
analysis of time-varying interconnections, dynamic average
consensus and the design of distributed observers for
infinite networks.

6.1 Time-varying interconnected systems

Although our main result only considers time-invariant
systems, it can also be applied to time-varying systems by
transforming a time-varying system into a time-invariant
one of the form (2). To see this, consider the time-varying
system

ẋ = f(t, x, u), (18)

where x ∈ X, u ∈ U and f : R×X×U → X is continuous
with f(t, 0, 0) = 0 for all t ∈ R. Using the same arguments
as those for well-posedness of the network (2), we assume
that the state space X and the input space U are chosen
as X = `p(N, (ni)) and U = `q(N, (mi)), respectively, for
fixed p, q ∈ [1,∞). The same class of admissible control
functions as in (3) is considered here.



We assume that unique solutions exist for all initial times,
initial states and admissible inputs. For any initial time
t0 ∈ R, initial value x0 ∈ X and input u ∈ U , the
corresponding solution of (18) is denoted by φ(·, t0, x0, u).

Definition 6.1. The system (18) is called uniformly ex-
ponentially input-to-state stable (UeISS) if it is forward
complete and there are constants a,M > 0, and γ ∈ K
such that for any initial time t0 ∈ R, initial state x0 ∈ X
and external input u ∈ U the corresponding solution
of (18) satisfies for all t ≥ t0

|φ(t, t0, x0, u)|p ≤Me−a(t−t
0)|x0|p + γ(|u(t0 + ·)|q,∞).

Uniformity here means that a,M do not depend on t0.

By adding a “clock”, one can (see e.g. (Teel, Andrew R.
and Praly, Laurent, 2000; Teel et al., 2002)) transform (18)
into

ẏ = 1, ż = f(y, z, u), (19)

where y ∈ R, z ∈ X, u ∈ U . We equip R with an arbitrary
norm | · | and turn R×X into an `p space by putting

|(y, z)|p := (|y|p + |z|pp)1/p.

Denoting the transition map of (19) by φ̃ = φ̃(t, (y, z), u),

and its z-component by φ̃2, we see that the following holds:

φ(t, t0, x, u) = φ̃2(t− t0, (t0, x), u(t0 + ·)) ∀t ≥ t0. (20)

The stability properties of (18) and (19) are related in the
following way:

Proposition 6.2. The system (18) is UeISS if and only if
(19) is eISS with respect to the closed setA = {(y, z) ∈ R×
X : z = 0} = R× {0}. 2

Now assume that the system (18) can be decomposed into
infinitely many interconnected subsystems

ẋi = fi(t, xi, x̄, ui), i ∈ N, (21)

with t ∈ R, xi ∈ Rni , x̄ ∈ X and ui ∈ Rmi . Also,
let fi : R × Rni × X × Rmi → Rni be continuous with
fi(t, 0, 0, 0) = 0 for all t ∈ R.

To each of the systems (21) we associate a time-invariant
system by

żi = f̃i(zi, (y, z̄), ui) := fi(y, zi, z̄, ui), (22)

where the time t now becomes an additional internal input
y. Define A0 := R and Ai := {0} ⊂ Rni for all i ≥ 1.
Aggregating all subsystems (22), i ∈ N, and adding the
clock ẏ = 1 as the 0th subsystem, we obtain an infinite
network of the form (19), modeled on the state space
`p(N0, (ni)) with n0 := 1.

To enable the stability analysis of the composite system,
we make the following assumption.

Assumption 6.3. For each i ∈ N there exists a continuous
function Vi : Rni → R+, satisfying for certain p, q ∈ [1,∞)
the following properties.

• There are constants αi, αi > 0 so that for all zi ∈ Rni

αi|zi|p ≤ Vi(zi) ≤ αi|zi|p. (23)

• There are constants λi, γij , γiu > 0 so that the
following holds: for each zi ∈ Rni , ui ∈ L∞(R+,Rmi)
and each internal input (y, z̄) ∈ C0(R+,R × X) and
for almost all t in the maximal interval of existence
of φi(t) := φi(t, zi, (y, z̄, ui)) one has

D+(Vi ◦ φi)(t) ≤− λiVi(φi(t)) +
∑
j∈Ii

γijVj(zj(t))

+ γiu|ui(t)|q, (24)

where we denote the components of z̄ by zj(·).
• For all t in the maximal interval of the existence of
φi one has D+(Vi ◦ φi)(t) <∞. 2

Note that due to the inequalities (7) and A0 = R, we
necessarily have V0 = 0 for the eISS Lyapunov function of
the 0th subsystem. Furthermore, we can choose λ0 as an
arbitrary positive number and γ0j := 0 for all j ∈ N.

It follows from Theorem 5.1 that under Assumption 6.3,
the infinite network of systems (21) is UeISS. This is
summarized by the following corollary.

Corollary 6.4. Consider networks (18) and (19) and sup-
pose the following:

(i) Assumption 6.3 holds.
(ii) The constants in Assumption 6.3 are uniformly

bounded as in Assumption 4.2.
(iii) The operator Γ : `1 → `1 is bounded, i.e., Assumption

4.3 holds.
(iv) The spectral radius of Ψ satisfies r(Ψ) < 1.

Then the composite system (18) is uniformly eISS. 2

6.2 Dynamic average consensus

Let G := (V, E) be an undirected graph with the set of
nodes V = N and the set of edges E ⊆ V × V. An edge
(i, j) in an undirected infinite graph denotes that nodes j
and i exchange information bidirectionally. Node j is an
input neighbor of node i if (j, i) ∈ E . We assume that each
agent can only communicate with a finite number of other
agents, known as neighbors. Let Ni = {j|(j, i) ∈ E} denote
the set of the input neighbors of node i.

Let xi ∈ Rn denote the state of node i ∈ V. Let each node
of G be a (dynamic) agent with dynamics

Σi : ẋi = fi(xi) +Bui, i ∈ N, (25)

where ui ∈ Rm is the control input, the continuous func-
tion fi : Rn → Rn represents the dynamics of each uncou-
pled node, and B ∈ Rn×m. We model the interconnection
Σ of these systems on the state space X := `∞(N, n) with
the external input space U := `∞(N,m) and assume well-
posedness for the class of controls U as defined before.

Note that the dynamics in (25) do not directly depend
on the neighbors’ states. But these states might enter the
input, i.e., we can define a control law ui = qi(xi, xi),
where qi is a continuous function on Rn×RNi , Ni := |Ni|n,
and xi ∈ RNi is the augmented vector of the states of
the neighbors. The aim is to establish control laws, which
asymptotically lead to consensus of the agents defined as
follows. The agents of the network have reached consensus
if and only if xi = xj for all i, j ∈ V. A corresponding state
value is called a consensus point.

In several applications of distributed cooperative control,
the problem of interest can be formulated as a so-called
dynamic average consensus problem in which a group of
agents cooperates to track a weighted average of locally
available time-varying reference signals. To define a mean-
ingful average of infinitely many quantities, we choose
a sequence (αi)i∈N of positive real numbers satisfying∑∞

i=1 αi = 1. One can interpret this sequence as a proba-
bility distribution on N. It is of particular interest to track
the following weighted average:



xa :=

∞∑
i=1

αixi. (26)

We observe that for every x ∈ X we have

|xa| ≤
∞∑
i=1

αi|xi| ≤ |x|∞ <∞.

The interconnections of the nodes, which are produced by
the control law qi, depend on the strength of the coupling
and on the state variables of the nodes. Here we consider
the most popular type of coupling which is known as
diffusive coupling (Ren et al., 2007). We assume that the
coupling between the ith and jth agents is defined as a
weighted difference, i.e., aij(xi−xj). Therefore, the control
input ui is given by

ui := −σ
∑
j∈Ni

αjaij(xi − xj), (27)

where σ > 0 denotes the coupling gain between the agents
and the interconnections weights aij satisfy

aij = aji > 0, i, j ∈ N and sup
i,j

aij = 1. (28)

We assume that aij = 0 for j ∈ N\Ni and we note that
aij = 0 reflects the fact that agent i does not communicate
with agent j.

We aim to choose the aij ’s and σ in (27) such that
xi(t) → xj(t) → xa(t) for all i, j ∈ V as t → ∞. The
difficulty of the dynamic average consensus problem is that
each agent is normally connected to only few other agents,
and therefore xa is not available to each agent.

Under mild assumptions on the vector fields fi (uniform
local boundedness and uniform local Lipschitz continuity),
it can be shown that the average xa(t) is continuously
differentiable for any solution φ(t) of Σ corresponding to

a continuous control input and ẋa(t) =
∑∞

i=1 αiφ̇i(t).

Let us define the error by

ei := αi(xi − xa), i ∈ N.
One can show that e ∈ `1(N, n), i.e. |e|1 < ∞. The
dynamics of the average is

ẋa =

∞∑
i=1

αi

(
fi(α

−1
i ei+xa)−σB

∑
j∈Ni

αjaij(α
−1
i ei−α−1j ej)

)
.

Note that using the symmetry condition in (28) the
coupling term vanishes; i.e.

∑∞
i=1

∑∞
j=1 αiαjaij(α

−1
i ei −

α−1j ej) = 0.

The convergence of the remaining sum follows from the

estimate
∑N

i=1

∑M
j=1 |αjaijei| ≤ |e|1 for all N,M ∈ N.

Hence,

ẋa =

∞∑
i=1

αifi(α
−1
i ei + xa). (29)

The dynamics of the the errors ei, i ∈ N, is given by

ėi = αifi(α
−1
i ei + xa)

− αiσB
∑
j∈Ni

αjaij(α
−1
i ei − α−1j ej)

− αi

∞∑
j=1

αjfj(α
−1
j ej + xa). (30)

We write Σ̂i for the ith subsystem, where we start the
enumeration with i = 0 so that xa is the state of the 0th
subsystem. The state space of the overall system will be
taken to be X̂ := `1(N0, n).

Now we study the stabilization of the average and error
system Σ̂ w.r.t. the closed set A := Rn × {0} × {0} ×
. . . ⊂ `1(N0, n). From our main result, Theorem 5.1, we
can immediately conclude the following.

Theorem 6.5. Consider the interconnection Σ̂ of the sub-
systems Σ̂i, i ∈ N0, and assume that the following assump-
tions hold:

(i) The system Σ̂ with state space X̂ = `1(N0, n) is well-
posed.

(ii) Each subsystem Σ̂i, i ≥ 1, admits a continuous eISS
Lyapunov function Vi (with respect to the trivial set
{0}, i.e., in the usual sense) so that Assumptions 4.1
and 4.2 are satisfied.

(iii) The operator Γ : `1 → `1 is bounded, i.e., Assumption
4.3 holds.

(iv) The spectral radius of Ψ satisfies r(Ψ) < 1.

Then Σ̂ is eISS w.r.t. the set A = Rn × {0} × {0} ×
. . . ⊂ `1(N0, n), which implies that there are M > 0 and
a > 0 so that

|e(t)|1 =

∞∑
i=1

αi|φi(t)− xa(t)| ≤Me−at|e(0)|1. (31)
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Although Theorem 6.5 explicitly makes no assumption
on the connectedness of the associated graph G, the
verification of the conditions in the theorem often asks
for the connectedness of G. We note that in some trivial
cases; e.g. if all agents Σi are linear and individually
asymptotically stable, all the conditions will be trivially
fulfilled even without making a connectedness assumption.

Remark 6.6. Of particular interest in weighted average
consensus applications is how to choose the weights αi.
A particular application of weighted average consensus is
distributed cooperative spectrum sensing, in which the
main objective is to develop distributed protocols for
solving the cooperative sensing problem in cognitive radio
systems; see e.g. (Hernandes et al., 2018; Zhang et al.,
2015; Li and Guo, 2015). The weights in this case represent
a ratio related to the channel conditions of each agent.

6.3 Distributed observers

We consider the problem of constructing distributed ob-
servers for networks of control systems. For simplicity,
we set the external inputs ui to zero and focus on the
network interconnection aspect, rather than discussing the
construction of individual local observers.

Our basic assumption is that in a network context, we have
local observers of local subsystems. We assume that the
states of these local observers asymptotically converge to
the true state of each subsystem, given perfect knowledge
of the true states of neighboring subsystems. Of course
such information will be unavailable in practice, and in-
stead each local observer will at best have the state esti-
mates produced by other, neighboring observers available
for its operation.



Distributed system to be observed: Let the distributed
nominal system consist of infinitely many interconnected
subsystems

Σi :

{
ẋi = fi(xi, xi)

yi = hi(xi, xi)
, i ∈ N. (32)

While xi ∈ Rni is the state of the system Σi, the quantity
yi ∈ Rpi (for some pi ∈ N) is the output that can
be measured locally and serves as an input for a state
observer. We denote by xi the vector composed of the
state variables xj , j ∈ Ii. Although our general setting
allows each subsystem to directly interact with infinitely
many other subsystems, in distributed sensing normally
each subsystem is only connected to a finite number of
subsystems. Therefore, the set Ii is assumed to be bounded
in this application. To make this observation as clear as
possible, in (32), as opposed to the main body of the paper,
we use the notation xi in place of x. Further we assume
that fi : Rni × RNi → Rni and hi : Rni × RNi → Rpi are
both continuous, where Ni :=

∑
j∈Ii nj .

Structure of the distributed observers: It is reasonable
to assume that a local observer Oi for a system Σi has
access to yi and produces an estimate x̂i of xi for all
t ≥ 0. Moreover, we essentially need to know xj for all
j ∈ Ii to reproduce the dynamics (32). Access to this kind
of information is unrealistic, so instead we assume that
it has access to the outputs yj of neighboring subsystems
and/or the estimates x̂j for j ∈ Ii produced by neighboring
observers.

This basically means that each local observer is repre-
sented by

Oi : ˙̂xi = f̂i(x̂i, yi, yi, x̂i) (33)

for some appropriate continuous function f̂i. Here yi
(resp. x̂i) is composed of the outputs yj (resp. state
variables x̂j), j ∈ Ii.
Necessarily, the observers are coupled in the same direc-
tional sense as the original distributed subsystems. Based
on the small-gain theorem introduced above, this leads us
to a framework for the design of distributed observers that
guarantees that an interconnection of local observers ex-
ponentially tracks the true system state. Thus we consider
the composite system given by

ẋi = fi(xi, xi), yi = hi(xi, xi), (34a)

˙̂xi = f̂i(x̂i, yi, yi, x̂i), i ∈ N. (34b)

A consistency framework for the design of distributed

observers: Denote by φi and φ̂i the flow maps of the
xi-subsystem and x̂i-subsystem of (34), respectively, and
define

Ai := {(xi, x̂i) ∈ Rni × Rni : xi = x̂i}, i ∈ N.
Denote also by φ and φ̂ the flow maps of x-subsystem and
x̂-subsystem of (34), respectively.

Assumption 6.7. We assume that the sequence of local
observers O = (Oi)i∈N for Σ = (Σi)i∈N is given. Further,
there is p ∈ [1,∞) so that for each i ∈ N there exists a
continuous function Vi : Rni → R+, as well as constants
αi, αi > 0 and λi, γij > 0, j ∈ Ii such that for all
xi, x̂i ∈ Rni the following holds:

αi |xi − x̂i|
p ≤ Vi(xi, x̂i) ≤ αi |xi − x̂i|p . (35)

Furthermore, we assume that dissipative estimates

D+(Vi ◦ (φi, φ̂i))(t) ≤− λiVi(φi(t), φ̂i(t))
+
∑
j∈Ii

γijVj(xj(t), x̂j(t)) (36)

hold for all i ∈ N and for all t in the maximal interval of
the existence of φi and φ̂i we have D+(Vi◦(φi, φ̂i))(t) <∞.
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Following our general framework, we choose the state space
for the whole system as X := `p(N, (ni)) for p as in (35).

We would like to derive conditions, which ensure that
a network of local observers O = (Oi)i∈N is a robust
distributed observer for the whole system Σ, i.e., the
error dynamics of the composite system (34) is globally
exponentially stable.

Consider X × X as a Banach space with the norm

‖(x, y)‖X×X :=
√
|x|2p + |y|2p, (x, y) ∈ X ×X and define

A := {(x, x̂) ∈ X×X : x = x̂} = X ∩A1∩A2∩ . . . . (37)

We pose the result of this subsection as a corollary, whose
proof is a direct consequence of Theorem 5.1.

Theorem 6.8. Consider the infinite interconnection Σ,
given by equations (32), and the corresponding composite
system (34), with fixed p ∈ [1,∞). Suppose that the
following hold.

(i) (34) is well-posed as a system on X ×X, with X =
`p(N, (ni)) as a state space of Σ.

(ii) Each Σi admits a continuous eISS Lyapunov function
Vi so that Assumptions 6.7 and 4.2 are satisfied.

(iii) The operator Γ : `1 → `1 is bounded, i.e., Assumption
4.3 holds.

(iv) The spectral radius of Ψ satisfies r(Ψ) < 1.

Then the composite system (34) admits a Lyapunov func-
tion w.r.t. A as defined in (37) of the form

V (x, x̂) =

∞∑
i=1

µiVi(xi, x̂i), V : X ×X → R+ (38)

for some µ = (µi)i∈N ∈ `∞ satisfying µ ≤ µi ≤ µ with
some constants µ, µ > 0. In particular, the function V has
the following properties.

(a) V is continuous on (X ×X)\A.
(b) There is a λ∞ > 0 so that for all x0 ∈ (X ×X)\A

D+Vu(x0) ≤ −λ∞V (x0).

(c) For all x, x̂ ∈ X the following inequalities hold

µα|(x, x̂)|pA ≤ V (x, x̂) ≤ µα|(x, x̂)|pA. (39)

Consequently, the error dynamics of (34) is globally expo-
nentially stable, i.e., there is β ∈ KL so that the following
holds for all x, x̂ ∈ X and all t ≥ 0:

|φ(t, x)− φ̂(t, x̂)|p ≤ β(|x− x̂|p, t), (40)

which in turn means that O = (Oi)i∈N is a robust
distributed observer for Σ. 2

7. CONCLUSIONS

We developed a small-gain theorem ensuing exponential
ISS with respect to a closed set for infinite networks. The
small-gain condition is given in terms of the spectral radius
representing the coupling between participating subsys-
tems, which can be very efficiently checked for a large class



of systems. We illustrated the applicability of our small-
gain theorem by applying it to three different problems
including stability of time-varying infinite networks at the
origin, weighted average consensus, and distributed state
estimation.
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Dashkovskiy, S.N., Rüffer, B.S., and Wirth, F.R. (2010).
Small gain theorems for large scale systems and con-
struction of ISS Lyapunov functions. SIAM J. Control
Opt., 48(6), 4089–4118.

Dunford, N. and Schwartz, J.T. (1957). Linear operators.
Part I: General theory. Interscience: New York.

Hernandes, A.G., Proença Jr., M.L., and Abrão, T. (2018).
Improved weighted average consensus in distributed co-
operative spectrum sensing networks. Trans. Emerging
Telecommun. Technol., 29(3), e3259.

Jacob, B., Nabiullin, R., Partington, J.R., and Schwen-
ninger, F.L. (2018). Infinite-dimensional input-to-state
stability and Orlicz spaces. SIAM J. Control Opt., 56(2),
868–889.

Jiang, Z.P., Mareels, I.M.Y., and Wang, Y. (1996). A
Lyapunov formulation of the nonlinear small-gain theo-
rem for interconnected ISS systems. Automatica, 32(8),
1211–1215.
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