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Abstract— This paper provides a small-gain theorem for a
so-called infinite network, i.e. a network composed of infinitely
many finite-dimensional systems. Such a network is mainly
motivated by addressing the scalability issue in large-but-finite
networks. We develop a so-called relaxed small-gain theorem
for input-to-state stability (ISS) with respect to a closed set.
It is shown that every exponentially ISS network necessarily
satisfies the proposed small-gain condition. Finally, we truncate
the infinite network to obtain a large-but-finite network for
all stability properties and performance indices obtained for
its infinite counterpart are preserved, if each subsystem is
individually ISS. The effectiveness of our small-gain theorem
is verified by application to an urban traffic network.

I. INTRODUCTION

Standard tools for stability analysis and control do not
scale well to the size of emerging networked systems; see
e.g. [1]–[3]. Such scalability issues can be addressed by
over-approximating a finite-but-large network with a network
of infinitely many subsystems called infinite network [4].
By treating this over-approximated network, one expects
to develop scale-free tools for analysis and control. In
particular, it is envisaged that an infinite network captures
the essence of its corresponding finite network, in terms of
performance/stability indices; cf., e.g., a vehicle platooning
application in [3]. However, this expectation has to be
rigorously checked as counter-intuitive results for control of
vehicle platoons have been already observed in [5].

This paper investigates input-to-state stability (ISS) with
respect to closed sets of discrete-time infinite networks
within a small-gain framework. We develop so-called relaxed
small-gain conditions for which, in contrast with classic
small-gain conditions [6], [7], not every subsystem has to be
individually ISS. Indeed, subsystems may have stabilizing
effects and can be individually unstable; see [8]–[10] for
finite network examples. For the case of exponential ISS we
show necessity and sufficiency of the proposed small-gain
conditions. By truncation finite networks (of possibly un-
known size) are obtained from the infinite network. We show
that if each subsystem in the infinite network is individually
ISS, all the stability and/or performance indices obtained for
the infinite network are preserved for truncations. In that
way, the small-gain conditions for the finite network are
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independent of network size. The effectiveness of our results
is illustrated by application to a traffic network.

Related literature: ISS small-gain theory for networks of
countably many finite-dimensional continuous-time systems
has been studied in [11]–[14]. By [11], a network of an
infinite number of ISS systems is also ISS, if the internal
gains are uniformly less than identity. [1] shows that classic
max-form small-gain conditions (SGCs) developed for finite-
dimensional systems [6] do not guarantee the stability of in-
finite networks of ISS systems. To address this, [1] develops
robust strong SGCs, but the small-gain criteria obtained are
not tight and more investigations are needed.

For the case of linear gain operators, tight results have
been achieved in [12], where sum-type SGCs for exponential
ISS of infinite networks are developed. In [12] each sub-
system is assumed to be exponentially ISS and a spectral
small-gain condition is presented. This work is extended to
exponential ISS with respect to closed sets in [13]. This ap-
proach covers a wide range of stability/stabilization problems
including incremental stability, consensus type problems, ISS
of time-varying systems in a unified setting [13]. In all of
the above works, a Lyapunov small-gain approach is used.
Inspired by [7], a trajectory-based formulation for infinite
networks has been developed in [14].

In classic ISS small-gain theorems, it is required that each
subsystem is individually ISS. To address this obvious con-
servatism, the notion of finite-step Lyapunov functions [15],
[16] can be merged with a Lyapunov-based small-gain
methodology, which leads to so-called relaxed SGCs [8]–
[10]. A finite-step Lyapunov function need not decay every
single time step, but only after a finite number of steps. In a
network setting, this property allows for the consideration of
potentially stabilizing effects of subsystems on each other.
Relaxed SGCs are shown to be necessary and sufficient and
are applicable to networks with unstable subsystems. In [17]
relaxed SGCs for ISS of finite-dimensional networks with
respect to closed sets have been developed.

In this work, we extend the results in [17] to infinite net-
works. Such a generalization leads to several nontrivialities
as this calls for a careful choice of the infinite-dimensional
state space, and developing direct and converse Lyapunov
theorems in an infinite-dimensional setting. In the infinite
networks context, our work is close to [11] as we also assume
the internal ISS gains to be less than identity. However, the
SGCs in [11] are only sufficient, while here we show the
necessity of our formulation in case of exponential ISS.
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II. PRELIMINARIES

A. Notation
We write N for the set of positive integers and N0 :=

N ∪ {0}. For vector norms on (in)finite-dimensional vector
spaces, we write | · |. For the sets of comparison functions
K,K∞, and KL, see [18]. For α, γ ∈ K we write α < γ
if α(s) < γ(s) for all s > 0. Composition of functions is
denoted by the symbol ◦ and repeated composition of, e.g., a
function γ is defined inductively by γ1 := γ, γi+1 := γ ◦γi.
B. System description

We study the interconnection of countably many systems,
each given by a finite-dimensional difference equation. Using
N as the index set (by default), the subsystem i is written as

Σi : x+
i = fi(xi, x̄i, ui). (1)

The family (Σi)i∈N comes together with sequences (ni)i∈N,
(pi)i∈N of positive integers and finite index sets Ii ⊂ N\{i},
i ∈ N, so that the following assumptions hold.

(i) The state vector xi of Σi is an element of Rni .
(ii) The vector x̄i consists of the state vectors xj , j ∈ Ii.

(iii) The external input vector ui is an element of Rpi .
(iv) The right-hand side is a continuous function fi : Rni ×

RNi × Rpi → Rni , where Ni :=
∑
j∈Ii nj .

In system (1), we consider x̄i(·) as an internal input and
ui(·) as an external input. To define the overall network, let
x := (xi)i∈N, u := (ui)i∈N and the right-hand side

f(x, u) := (f1(x1, x̄1, u1), f2(x2, x̄2, u2), . . .). (2)

The overall system is then formally written as

Σ : x+ = f(x, u). (3)

The state space X of Σ is the Banach space of bounded
sequences (xi)i∈N with xi ∈ Rni . For this, we first fix a norm
on each Rni and define `∞(N, (ni)) := {x = (xi)i∈N : xi ∈
Rni , supi∈N |xi| <∞}, with the norm |x|∞ := supi∈N |xi|.

Similarly, we consider the external input space U :=
`∞(N, (pi)), where we fix norms on Rpi that we simply
denote by | · | again. By the space U of admissible external
input functions, we mean all the sequences u : N0 → U
where u(k) ∈ `∞(N, (pi)) for all k ∈ N0. The space U
is equipped with the norm ‖u‖∞ := supk≥0 |u(k)|∞. For
initial values ξ ∈ X and inputs u ∈ U , x(·, ξ, u) denotes the
corresponding solution to (3). In the sequel we will write
Σ = Σ(f,X,U) if we want to make the data explicit.

We say that Σ is well-posed, if f is well-defined as a map
from X × U to X . In this case, for all ξ ∈ X , u ∈ U the
solution of (3) exists on N0, that is Σ is forward complete.
The following gives a complete characterization of well-
posed systems on `∞(N, (ni)). The (simple) proof is omitted.

Lemma II.1 Consider systems Σi as in (1) satisfying the
standard assumptions (i)-(iv). The following are equivalent:

(i) The induced system Σ(f,X,U) is well-posed.
(ii) There exist C > 0 and κ ∈ K∞ such that for all i ∈ N

and all xi ∈ Rni , xi ∈ RNi , ui ∈ Rpi :

|fi(xi, xi, ui)| ≤ C + κ(|xi|) + κ(|xi|) + κ(|ui|).

C. Distances in sequence spaces

Let X = `∞(N, (ni)). Consider nonempty closed sets
Ai ⊂ Rni , i ∈ N. For xi ∈ Rni the distance of xi to the set
Ai is |xi|Ai

:= infyi∈Ai
|xi − yi|. Further define the set

A := {x ∈ X : xi ∈ Ai, i ∈ N}=X ∩
∏
i∈N
Ai. (4)

If A 6= ∅, we define the distance from any x ∈ X to A as

|x|A := inf
y∈A
|x− y|∞ = inf

y∈A
sup
i∈N
|xi − yi|. (5)

Lemma II.2 Let X = `∞(N, (ni)). Assume that A in by (4)
is nonempty. Then for any x ∈ X there is an y∗ ∈ A with

|x|A = sup
i∈N
|xi|Ai

= |x− y∗|∞. (6)

The proof is omitted for reasons of space. We stress that
the statement is only applicable for A ⊂ X = `∞(N, (ni)),
while in general

∏
i∈NAi may contain only unbounded

sequences. Also note that if A = {0}, then |x|{0} = |x|∞.

III. INPUT-TO-STATE STABILITY

We aim to establish the stability of the interconnected
system with respect to a closed set A ⊂ X using finite-step
Lyapunov functions. To this end, we introduce the notions
of input-to-state stability (ISS) and of K-boundedness with
respect to A. In this section we assume that Σ is well-posed.

Definition III.1 Let A ⊂ X be nonempty and closed. The
function f : X × U → X is called K-bounded with respect
to A, if there are κ1, κ2 ∈ K such that for all ξ ∈ X , µ ∈ U

|f(ξ, µ)|A ≤ κ1(|ξ|A) + κ2(|µ|∞). (7)

Definition III.2 Let ∅ 6= A ⊂ X be closed. System Σ is
said to be input-to-state stable (ISS) with respect to A, if
there exist β ∈ KL and γ ∈ K such that for any initial state
ξ ∈ X and any u ∈ U the corresponding solution to (3)
satisfies

|x(k, ξ, u)|A ≤ max
{
β(|ξ|A, k), γ(‖u‖∞)

}
∀k ∈ N0. (8)

Σ is called exponentially input-to-state stable (eISS) in A,
if there are constants C ≥ 1, ρ ∈ [0, 1) and γ ∈ K such that
(8) holds with β(r, k) = Cρkr.

As observed in [17], [19], every ISS system is necessarily
K-bounded, see Proposition III.4.

The underlying idea is to formulate stability properties
from a subsequence of state trajectories. In particular, we
aim to answer the question: whether one can conclude ISS by
only looking at solutions every M time steps, with M ∈ N.
We define the iterates of f inductively, by f1 := f , and
fk+1 : X × Uk+1 → X by fk+1(x, (u0, . . . , uk)) =
f
(
fk
(
x, (u0, . . . , uk−1)

)
, uk
)
. The M -iterate system is then

ΣM := Σ(fM , X, UM ). The following lemma establishes
that ΣM is ISS if and only if the trajectories of Σ satisfy an
ISS-like estimate every M time steps.
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Lemma III.3 Given a nonempty closed set A ⊂ X and
M ∈ N, ΣM is ISS with respect to A, if and only if there
are β ∈ KL and γ ∈ K such that for all ξ ∈ X , u ∈ U the
corresponding solution to (3) satisfies for all k ∈ N0

|x(Mk, ξ, u)|A ≤ max{β(|ξ|A, k), γ(‖u‖∞)}. (9)

The following proposition shows a useful criterion for ISS
of discrete-time systems. It was shown for finite-dimensional
systems in [19, Remark 4.2, Corollary 4.3] using the converse
ISS Lyapunov theorems. One can show the result also by a
direct method, which we omit due to the space reasons.

Proposition III.4 Let A ⊂ X be closed.
(i) Σ is ISS with respect to A ⇔ there is M ∈ N such

that ΣM is ISS with respect to A, and f is K-bounded
with respect to A.

(ii) Σ is eISS with respect to A ⇔ there is M ∈ N
such that ΣM is eISS in A, and f is K-bounded with
respect to A with a linear κ1.

Now we introduce finite-step ISS Lyapunov functions.

Definition III.5 Let a nonempty closed set A ⊂ X be given.
A continuous function V : X → R+ is called a finite-step
ISS Lyapunov function for Σ with respect to A if there exist
M ∈ N, ω, ω, α ∈ K∞ with α < id and γ ∈ K such that

ω(|ξ|A) ≤ V (ξ) ≤ ω(|ξ|A), (10a)

V (x(M, ξ, u)) ≤ max
{
α(V (ξ)), γ(‖u‖∞)

}
, (10b)

hold for all ξ ∈ X and u ∈ U . The function V is called
a (power-bounded) finite-step eISS Lyapunov function for Σ
with respect to A if there are M ∈ N, constants w,w, b > 0,
κ ∈ [0, 1) and γ ∈ K such that

w|ξ|bA ≤ V (ξ) ≤ w|ξ|bA, (11a)

V (x(M, ξ, u)) ≤ max
{
κV (ξ), γ(‖u‖∞)

}
, (11b)

hold for all ξ ∈ X and u ∈ U . If inequality (10b)
(resp. (11b)) holds with M = 1, then we drop the term
“finite-step” and simply speak of an ISS (resp. eISS) Lya-
punov function.

Note that every ISS Lyapunov function is a finite-step ISS
Lyapunov function. However, a finite-step Lyapunov function
need not decay at each time step, but only every M time
steps. This relaxation is useful in the analysis and design
of control systems; see e.g. [8], [9], [15], [17], [20] for
finite-step Lyapunov function-based analysis and synthesis
of finite-dimensional control systems. In particular, for large-
scale networks, the use of finite-step Lyapunov functions
enables us to introduce small-gain conditions which are not
only sufficient, but also necessary for the verification of ISS
of the network (see Theorem IV.4 below).

Now we show that the existence of a finite-step ISS
Lyapunov function guarantees ISS of the system.

Proposition III.6 Consider a system Σ(f,X,U) with K-
bounded f : X × U → X . If there exists a finite-step ISS

Lyapunov function for Σ with respect to A, then Σ is ISS with
respect to A. Additionally, if κ1 in (7) is a linear function,
the existence of a finite-step eISS Lyapunov function for Σ
with respect to A implies eISS of Σ with respect to A.

Proof: The proof boils down to the equivalence between
ISS of Σ and ISS of ΣM . A finite-step ISS Lyapunov
function (with a given M ) is a 1-step ISS Lyapunov function
for ΣM , which by classic direct ISS Lyapunov theorem1

implies ISS of ΣM . Proposition III.4 finishes the proof.
Here we present a converse finite-step eISS Lyapunov

theorem yielding an explicit formula for M in (11b).

Proposition III.7 Let A ⊂ X be nonempty and closed.
Suppose that system Σ is eISS in A with ρ ∈ [0, 1), C ≥ 1
and γ ∈ K. Then for any function V : X → R+ and
constants w,w, b > 0 satisfying

w|ξ|bA ≤ V (ξ) ≤ w|ξ|bA, ∀ξ ∈ X, (12)

and for all κ ∈ (0, 1) there exists an M ∈ N such that

V (x(M, ξ, u)) ≤ max
{
κV (ξ), wγ(‖u‖∞)b

}
, (13)

for all ξ ∈ X and u ∈ U . If M ≥ 1
b logρ(

κw
Cbw

), then V is
an exponential M -step ISS Lyapunov function for Σ.

The proof is similar to the proof of [9, Theorem 7] and is
omitted. We note that the above converse Lyapunov result
provides an explicit formula to compute the finite-step Lya-
punov function. This proposition is an infinite-dimensional
extension of Theorem 10 in [20] which has been already
used for controller design, see [20, Proposition 14, Theorem
23] for more details.

IV. ISS FOR INFINITE NETWORKS

The main objective of this work is to develop conditions
for input-to-state stability of the interconnection of countably
many subsystems. We assume that each subsystem (1) is
ISS in a closed set Ai and that for all Σi there exist
continuous ISS Lyapunov functions with linear gains. We
assume further that the interconnection Σ is well-posed. The
next assumption states the ISS property for the subsystems.

Assumption IV.1 Given M ∈ N and nonempty closed sets
Ai ⊂ Rni , i ∈ N, for each subsystem Σi, i ∈ N there exists
a continuous function Wi : Rni → R+ such that
(i) There are αi, αi ∈ K∞ so that for all ξi ∈ Rni

αi(|ξi|Ai
) ≤Wi(ξi) ≤ αi(|ξi|Ai

). (14)

(ii) There are γij ∈ K∞ ∪ {0} and γiu ∈ K so that for all
ξ ∈ X , all u ∈ U the following holds

Wi(xi(M, ξ, u))≤max
{

sup
j∈N

γij(Wj(ξj)), γiu(‖u‖∞)
}
,

(15)

1The proof of a direct ISS Lyapunov theorem for infinite-dimensional
systems follows similar arguments to those in [21, Lemma 3.5] and [17,
Theorem 7] for finite-dimensional systems. It is not presented here.
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where xi denotes the ith component of solution x.

Note that xi(M) on the left hand side of (15) is the ith
component of of the solution x of (3). However, one does
not need to know the entire dynamics to compute (15) for
the ith subsystem. For the sake of discussion, let u = 0.
If M = 1, then the computation of x(1) only requires the
knowledge of fi, ξi and ξi. Now if M = 2, then we require
not only the information from the neighbors, but also their
neighbors, i.e. ξi and ξj with j ∈ Ii and fj with j ∈ Ii.
Similar arguments hold for M ≥ 3.

We will also need the following uniformity condition for
the functions introduced in Assumption IV.1.

Assumption IV.2 There exist α, α ∈ K∞, α < id and γu ∈
K, such that

α ≤ αi ≤ αi ≤ α, i ∈ N. (16)
γij ≤ α, i, j ∈ N. (17)
γiu ≤ γu, i ∈ N. (18)

Conditions (16) and (17) are necessary to construct a
coercive [22] finite-step ISS Lyapunov function for Σ from
the Wi. Condition (17) rules out nonuniform decay rates
for the solutions of (1). Without this uniformity asymptotic
stability of Σ may not hold, even if the system is linear and
all internal and external gains are zero. To see this, consider

x+
i = i/(i+ 1)xi + u, i ∈ N,

where xi, u ∈ R. This network is not exponentially stable
in the absence of inputs. Moreover, for arbitrarily small
inputs the network may exhibit unbounded state trajectories.
Finally, condition (18) is also crucial for ISS of the overall
system. Consider a network composed of subsystems of the
form x+

i = iu, xi, u ∈ R, i ∈ N, which is not ISS in {0}.
Now we establish that the interconnected system Σ is ISS

under the given assumptions. By Proposition III.6, our aim
is to find a finite-step ISS Lyapunov function for Σ. This is
achieved by the following relaxed small-gain theorem.

Theorem IV.3 Consider a well-posed infinite network Σ =
(f,X,U) and nonempty closed sets Ai ⊂ Rni , i ∈ N.
Let the set A = X ∩

∏
i∈NAi be nonempty. Suppose that

Assumptions IV.1 and IV.2 hold. Then Σ admits an M -step
ISS Lyapunov function with respect to A of the form

V (ξ) = sup
i∈N

Wi(ξi), V : X → R+. (19)

In particular, the function V has the following properties.
(a) For all ξ ∈ X and u ∈ U

V (x(M, ξ, u)) ≤ max
{
α(V (ξ)), γu(‖u‖∞)

}
. (20)

(b) For every ξ ∈ X the following inequalities hold:

α(|ξ|A) ≤ V (ξ) ≤ α(|ξ|A). (21)

In particular, Σ is ISS with respect to A.

Proof: From (14) and (16), we have

V (ξ) = sup
i∈N

Wi(ξi) ≤ sup
i∈N

ωi(|ξi|Ai
) ≤ sup

i∈N
ω(|ξi|Ai

).

It follows from the monotonicity of ω and Lemma II.2 that

V (ξ) ≤ ω(sup
i∈N
|ξi|Ai

) = ω(|ξ|A).

This shows that V is well-defined and gives an upper bound
in (21). Similarly, it holds that V (ξ) ≥ ω(supi∈N |xi|Ai

) =
ω(|ξ|A). Given any ξ ∈ X and u ∈ U , we also have that

V (x(M, ξ, u)) = sup
i∈N

Wi(xi(M, ξ, u))

(15),(17)
≤ sup

i∈N
max

{
sup
j∈N

α
(
Wj(ξj)

)
, γiu(‖u‖∞)

}
= max

{
α
(
V (ξ)

)
, sup
i∈N

γiu(‖u‖∞)
}

(18)
≤ max

{
α
(
V (ξ)

)
, γu(‖u‖∞)

}
,

which is identical to (20). Hence V is a finite-step Lyapunov
function for A and by Proposition III.6, Σ is ISS in A.

For M = 1, Theorem IV.3 reduces to classic small-gain
conditions. In this case, our result is a discrete-time coun-
terpart of [11, Theorem 1]. There is of course conservatism
in the condition (16) which demands that all coupling gains
γij be less than identity. However, as M > 1 subsystems
may have stabilizing effects on each other, thus reducing the
degree of conservatism. Interestingly enough, in the case of
exponential ISS, we are able to establish the necessity of
our small-gain theorem, which shows the non-conservatism
of the proposed small-gain condition in this case.

Theorem IV.4 Consider the infinite network Σ. Let Σ be
eISS with respect toA = X∩

∏
i∈NAi, with nonempty closed

sets Ai ⊂ Rni . Then there exist continuous functions Wi :
Rni → R+, i ∈ N and M ∈ N such that Assumptions IV.1
and IV.2 hold.

Proof: The eISS property of Σ implies that there exist
M ∈ N, γ ∈ K and c < 1 such that for all ξ ∈ X , u ∈ U :

|x(M, ξ, u)|A ≤ max
{
c|ξ|A, γ(‖u‖∞)

}
. (22)

Define Wi : Rni → R+ for i ∈ N by Wi(xi) := |xi|Ai . This
satisfies (14), (16) with b = 1, α = αi = αi = α = 1. Also

Wi(xi(M, ξ, u)) = |xi(M, ξ, u)|Ai ≤ |x(M, ξ, u)|A
(22)

≤ max
{
c|ξ|A, γ(‖u‖∞)

}
= max

{
sup
j∈N

c|ξj |Aj
, γ(‖u‖∞)

}
.

We can rewrite this as

Wi(xi(M, ξ, u)) ≤ max
{

sup
j∈N

cWj(ξj), γ(‖u‖∞)
}
, (23)

which implies that (15) is satisfied with γij = c and γiu = γ
for all i, j ∈ N. Conditions (17) and (18) also hold with
α = c and γu = γ, which completes the proof.

Note that in the proof of the necessity of small-gain
theorem the individual ISS Lyapunov-like functions Wi and
the corresponding gain functions are explicitly constructed.
Moreover, it shows that there exists some positive integer M
for which all the coupling gain functions γij can be chosen
identically. In the spirit of our recent work [20], we believe
that one can gain from these observations for a distributed
control design based on our small-gain theorem.
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A. From infinite to finite networks

The underlying idea to deal with infinite networks is to
develop scale-free tools for analysis and design of finite
networks of arbitrary size. The question arises whether the
quantitative stability indices, e.g. decay rate of solutions,
obtained for an infinite network are preserved for the original
network. This section addresses this question. We show that
the quantitative ISS indices given by Theorem IV.3 will be
preserved for any truncation of an infinite network if M = 1
in Assumption IV.1.

For the purpose of the truncation process, we only consider
the first n ∈ N subsystems of Σ and denote the truncated
system by Σ〈n〉. As the states xj for j > n are no longer
present in Σ〈n〉, but in general may still appear in some of
the equations, we interpret these xj as additional external
inputs. A truncation of the infinite network is represented by

Σ〈n〉 : (x〈n〉)+ = f 〈n〉(x〈n〉, x̃, u〈n〉), (24)

where the state vector x〈n〉 = (xi)1≤i≤n ∈ RN , N =∑n
i=1 ni, the input vector u〈n〉 = (ui)1≤i≤n, P =

∑n
i=1 pi,

the additional input vector x̃ := (xi)i∈N,i>n, and the dy-
namics f 〈n〉 : RN ×X ×RP → RN is defined accordingly.
Here we identify the space of bounded sequences (xi)i∈N,i>n
with X . Clearly the network Σ〈n〉 is obtained from the
interconnection of the first n subsystems Σi of the infinite
network Σ. Note that the case in which x̃ is set to zero
all through the network is covered by our formulation as a
special case.

In the following we establish ISS of Σ〈n〉 in the set
A〈n〉 := Πn

i=1Ai and compute the corresponding ISS gain
functions under assumption that Σ is ISS.

Theorem IV.5 Consider the infinite network Σ. Suppose
that Assumption IV.1 with M = 1 and Assumption IV.2 are
satisfied. Then the function V 〈n〉 : RN → R+ defined by

V 〈n〉(ξ〈n〉) = max
1≤i≤n

Wi(ξi), (25)

satisfies for all ξ〈n〉 ∈ RN , ξ̃ ∈ X and u〈n〉 ∈ RP :

α(|ξ|A〈n〉) ≤ V 〈n〉(ξ〈n〉) ≤ α(|ξ|A〈n〉), (26)

V (f 〈n〉(ξ〈n〉, ξ̃, u)) ≤ max
{
α(V (ξ〈n〉)), α ◦ α(|ξ̃|∞),

γu(|u|∞)
}
. (27)

In particular, Σ〈n〉 is ISS in A〈n〉.

Proof: The proof of (27) follows the same arguments
as those for (20) in Theorem IV.3. Here we give a sketch
of the proof of (27). For each Σi of the network Σ〈n〉, we
rewrite the dissipative inequality (15) for M = 1 as

Wi(fi(ξi, ξ̄i, ui))≤max
{

max
1≤j≤n

γij(Wj(ξj)),

sup
j∈N

γij(Wj(ξ̃j)), γiu(|u〈n〉|∞)
}

(17),(18)
≤ max

{
max

1≤j≤n
α(Wj(ξj)), α(sup

j∈N
Wj(ξ̃j)),γu(|u〈n〉|∞)

}

(16)
≤max

{
max

1≤j≤n
α(Wj(ξj)), α ◦ α(|ξ̃|∞), γu(|u〈n〉|∞)

}
.

It follows from (25) that V 〈n〉(f 〈n〉(ξ〈n〉, ξ̃〈n〉, u〈n〉))≤

max
1≤j≤n

{
α(Wj(ξ)), α ◦ α(|ξ̃|∞), γu(|u〈n〉|∞)

}
.

By [17, Theorem 7] Σ〈n〉 is ISS in the set A〈n〉.
As seen from (27), the decay rate α is preserved un-

der truncation. Moreover, if the external inputs x̃ are not
present to Σ〈n〉, the input gain γu is preserved. Thus,
stability/performance indices of the overall system are in-
dependent of network size. We further illustrate this aspect
via numerical simulation below.

V. ILLUSTRATIVE EXAMPLE

In this section, we verify the effectiveness of our small-
gain theorem by application to the control of traffic networks.

We revisit an example of a traffic network composed of
infinitely many cells considered in [12]. Each cell i ∈ N
represents a continuous-time system Σi described by

Σi : ẋi = −
(vi
li

+ ei

)
xi +Dix̄i +Biui, (28)

with xi, ui ∈ R and the following structure
− ei = 0, Di = cvi+1

li+1
, x̄i = xi+1, Bi = 0 if i ∈ S1 :=

{1, 3};
− ei = 0, Di = cvi+4

li+4
, x̄i = xi+4, Bi = r > 0 if i ∈

S2 := {4 + 8j : j ∈ N ∪ {0}};
− ei = 0, Di = cvi−4

li−4
, x̄i = xi−4, Bi = r

2 if i ∈ S3 :=

{5 + 8j : j ∈ N ∪ {0}};
− ei = 0, Di = c( vi−1

li−1
, vi+4

li+4
)>, x̄i = (xi−1, xi+4), Bi =

0 if i ∈ S4 := {6 + 8j : j ∈ N ∪ {0}};
− ei = e ∈ (0, 1), Di = c( vi−4

li−4
, vi+1

li+1
)>, x̄i =

(xi−4, xi+1), Bi = 0 if i ∈ S5 := {9 + 8j : j ∈
N ∪ {0}};

− ei = 0, Di = c( vi+1

li+1
, vi+4

li+4
)>, x̄i = (xi+1, xi+4), Bi = 0

if i ∈ S6 := {2 + 8j : j ∈ N ∪ {0}};
− ei = 0, Di = c( vi−4

li−4
, vi−1

li−1
)>, x̄i = (xi−4, xi−1), Bi =

0 if i ∈ S7 := {7 + 8j : j ∈ N ∪ {0}};
− ei = 2e,Di = c( vi−1

li−1
, vi+4

li+4
)>, x̄i = (xi−1, xi+4), Bi =

0 if i ∈ S8 := {8 + 8j : j ∈ N ∪ {0}};
− ei = 0, Di = c( vi−4

li−4
, vi+1

li+1
)>, x̄i = (xi−4, xi+1), Bi =

0 if i ∈ S9 := {11 + 8j : j ∈ N ∪ {0}};
where, for all i ∈ N, 0 <

¯
v ≤ vi ≤ v̄, 0 < l ≤ li ≤ l, and

c ∈ (0, 0.5). In (28), li is the length of a cell in kilometers
(km), and vi is the flow speed of the vehicles in kilometers
per hour (km/h). The state xi is the density of traffic, given
in vehicles per cell, for each cell i of the road. The scalars
Bi represent the number of vehicles that can enter the cells
through entries which are controlled by ui, with ui = 1 and
ui = 0 correspond to green and red light, respectively. The
percentage of vehicles leaving the cells using available exits
is denoted by ei. Furthermore, c, which is a design parameter,
reflects the percentage of vehicles entering cell i from the
neighboring cells. Discretizing (28) in time with sampling
time T > 0, each cell i is described by

Σdi : x+
i =

(
1− T

(vi
li

+ ei
))
xi + TDix̄i + TBiui. (29)
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Fig. 1. State trajectories xi for a network of 1000 cells.

To verify eISS of the network, for each subsystem Σdi we
take an eISS Lyapunov function of the form Vi(xi) = |xi|.
The function Vi clearly satisfies (14) and (16) for all i ∈ N
with α = αi = αi = α = 1. We also have

Vi(x
+
i ) ≤

(
1− T

(vi
li

+ ei
))
|xi|+Tc ‖Di‖ |x̄i|∞+TBi |ui|

≤ max
{
γ |xi| , γ |x̄i|∞ ,

1

ε
TBi |ui|

}
≤ max

{
γVi(xi), γVi(xi−1), γVi(xi+1),

1

ε
TBi |ui|

}
where γ :=

(
1 − T

(
vi
li

+ ei
))

+ Tc ‖Di‖ + ε, ε > 0. This
implies that (15) is satisfied with M = 1, γij = γ for all
j ∈ {i− 1, i, i+ 1}, γij = 0 for all j ∈ N\{i− 1, i, i+ 1},
γiu = TBi/ε. Additionally, condition (18) holds with γu =
Tr/ε. Finally, we have (17) as one can always take T, c and
ε sufficiently small such that α = 1−T

(
¯
v

l

)
+Tc

(
v̄
l

)
+ε < 1.

We note that all gain functions are linear. This together with
the previous observations admits the use of Theorem IV.3 to
conclude eISS of the network composed of subsystems (29).

By Theorem IV.5 the performance indices, i.e. the decay
rate α and the input gain γu, are preserved for any finite
truncation. This is illustrated by Figures 1 and 2, for networks
of 1000, respectively 2000, cells. For the simulation ui =
1, the sampling period T = 0.02 sec. Moreover, the initial
values are uniformly distributed over [0, 20]. From Figures 1
and 2, the overall behavior of the network remains almost
identical, though the network size doubles.
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