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Class of systems

x(t) = Ax(t) + f(x(),u(t)), x(t) € D(A) C X,
{ x(0) = Xp.
@ U = PC(R4,U)
@ Ax = limi 10 HT(t)x — X).
@ T is a Cy-semigroup.
@ fis a Lipschitz continuous perturbation.
x € C([0, T], X) is a mild solution iff

x(t) = T(1)x + /0 T s)f(x(s). u(s))ds.

Most of results hold for much more general systems, inlcuding:
@ some classes of boundary control systems

@ time-delay systems

@ switched systems (with oo number of switching modes)

° ...
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Input-to-state stability

Definition (ISS)

ISS & 3JBeKL,7eKs: VE>0,Vxe X,Yuel

||¢(t,X, U)HX < 5(||X||X’ t) + ’V(HUHU)

---------- N e A (70119
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Input-to-state stability

Definition (Input-to-state practical stability)
ISpS & 3JBeKL,7€eKy,Ic>0: VE>0,VxXe X,YVueld
lo(t, x, u)llx < B(lIxlIx, t) +v(l[ullu) + c.

---------- N e A (70119

Andrii Mironchenko
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Infinite-dimensional ISS theory: 2007 — now

M. Ahmadi, F. Bribiesca Argomedo, A.Bao, A. Chalillet,

Y. Chitour, S. Dashkovskiy, G. Is. Detorakis, M. Edalatzadeh,
Y.-P. Guo, H.lto, B.Jacob, B.Jayawardhana, Z.-P.Jiang,
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S. Marx, F. Mazenc, AM, K. Morris, R. Nabiullin, Y. Orlov,

S. Palfi, A. Papachristodoulou, J. R. Partington, A. Pisano,
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> 2/3 of papers appeared since 2016.
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Time-delay results are not in the above list
(were already a mature subject at 2007)
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Motivation
Some milestones of ISpS theory of ODE systems

1989 Sontag introduces ISS

1994 Jiang, Teel, Praly introduce ISpS and prove nonlinear
small-gain theorem for couplings of 2 systems

1995,1996 Sontag, Wang show foundational characterizations of ISS
as well as partially characterized ISpS.

2007 Dashkovskiy, Ruffer, Wirth prove (using characterizations of
ISS) nonlinear small-gain theorem for couplings of n systems

v
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Motivation
Some milestones of ISpS theory of ODE systems

1989 Sontag introduces ISS

1994 Jiang, Teel, Praly introduce ISpS and prove nonlinear
small-gain theorem for couplings of 2 systems

1995,1996 Sontag, Wang show foundational characterizations of ISS
as well as partially characterized ISpS.

2007 Dashkovskiy, Ruffer, Wirth prove (using characterizations of
ISS) nonlinear small-gain theorem for couplings of n systems

v

Recall that for ODEs

lo(t, x,0)| < B(t,|x]) <« Global asymptotic stability
< Local stability A Global attractivity

Sontag and Wang generalized this result to the ISS setting.
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LIM and ULIM

LIM & 3y €Koo: VX EX,VU€EU,Ve>03T = T(c, x,u) :

lo(t, x, u)l[x < e +~(llulle)-

ULIM & J7eK:Ve>0,Yr>0 3r=r1(e,r):

IXllx <r,uet = 3t<7(r): [[¢(t x, u)lx < e+ (l[ull)
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LIM and ULIM

LIM & FyeKoo:VxXe X,Yuecl,Ve>03T = T(e,x,u):

lo(t, x, u)llx < &+ ~(llull)-

ULIM & dJ7eK:Ve>0,Yr>0 3r=r1(e,r):

IXllx <r,uctd = 3t<7(r): [lo(t, x, u)|[x <e+([|ull)

ot x, u)llx

t(x, u,¢e) t(x,u,5) t
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LIM and ULIM

LIM & Iy eKu:VxeX,YVueld,Ve>03T =T(e, x,u):
lo(t, x, u)l[x < &+ ~(llulle)-
ULIM & J7eK:Ve>0,Yr>0 3r=r1(e,r):

IXllx <r,uet = 3t<7(r): [[¢(t x, u)lx < e+ (l[ull)

@ Limit property is a reminiscent of a so-called 'weak attractivity’.

@ Limit property is closely related to the concept of recurrent sets.

v
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LIM and ULIM

LIM & FyeKoo:VxXe X,Yuecl,Ve>03T = T(e,x,u):
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Result of Sontag and Wang

Definition (Stability)
ULS & 3r>0,30,7 € Ko

t>0,xeBrue By = |t x u)lx <a(llxlx) +v(llulle)-
0-ULS & dr>0,do0 € Kuo:

t>0,xe B = [[o(t,x,0)[x < o(|x]lx)-

Theorem (Sontag, Wang, TAC 1996)

Let FC:= "forward-complete".

(ODE) : x =f(x,u), x(t)eR"

(ODE) isISS <« (ODE)isFC A (ODE)isLIM A (ODE)is0-ULS
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Result of Sontag and Wang

Theorem (Sontag, Wang, TAC 1996)

Let FC:= "forward-complete”.
(ODE) : x =f(x,u), x(t)eR"
(ODE)isISS <« (ODE)isFC N (ODE)isLIM AN (ODE)is0-ULS

Proposition (Mironchenko, Wirth, TAC 2018)

(ODE) isLIM < (ODE) is ULIM
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Characterizations of ISS for co-dim systems

Characterizations due to Sontag and Wang cannot be straightforwardly
transferred to co-dim. New notions and more uniformity is needed

Definition

| A

¥ has bounded reachability sets (BRS), if:

cC>0,7>0 = sup lo(t, x, u)||x < oo.
IxlIx<C, llull<C, te[0,7]

Theorem (Mironchenko, Wirth, TAC 2018)

Consider a forward-complete system

(EE) : x =Ax + f(x,u), (A D(A)):X— X.

(EE)isISS <« (EE)isBRS A (EE)isULIM A (EE)is0-ULS

Andrii Mironchenko Characterizations of ISS and ISpS Wirzburg, 2018 10/24



Characterizations of ISS for co-dim systems

Importance

@ Relations of ISS to other stability notions, e.g. nonlinear L, — L>-gain

@ Basis for the proof of general small-gain theorems

Essential for the theory of non-coercive ISS Lyapunov function

(Hopefully) will lead to improvements of Lyapunov-Krasovskii
methodology for time-delay systems

Extensions to practical ISS
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Characterizations of ISS for co-dim systems

Importance

@ Relations of ISS to other stability notions, e.g. nonlinear L, — L>-gain

Basis for the proof of general small-gain theorems

°
@ Essential for the theory of non-coercive ISS Lyapunov function
)

(Hopefully) will lead to improvements of Lyapunov-Krasovskii
methodology for time-delay systems

Extensions to practical ISS

Characterizations of ISS for co-dim systems

@ A. M.. Local input-to-state stability: Characterizations and counterexamples.

Systems & Control Letters, 87:23—28, 2016.

@ A. M., F. Wirth. Characterizations of input-to-state stability for

infinite-dimensional systems. IEEE TAC, 63 (6): 1602—1617, 2018.

Andrii Mironchenko

Characterizations of ISS and ISpS

Wiirzburg, 2018
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Application I: Non-coercive ISS LFs

V : X — R, is a non-coercive ISS Lyapunov function for X = (X, U, ¢),
ifEll/Jg,Oé € Koo, 0 €K:

0 < V(x) <¢e(lxllx), vxeX (1)

and

Vu(x) < —a(llxllx) + o(llull), VxeX, uel. (2)
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Application I: Non-coercive ISS LFs

V : X — R, is a non-coercive ISS Lyapunov function for X = (X, U, ¢),
if o, € Koo, 0 € K

0 < V(x) < ¢a(llxllx), vxeX (1)

<lile Vu(x) < —a(|Ixllx) + o(lullu), VxeX, uel. 2)

Non-coercive LFs are frequently used for linear systems.
Next we show an essentially nonlinear result.

Theorem (Mironchenko, Wirth, IEEE 2018,

Jacob, Mironchenko, Partington, Wirth, CDC 2018)

Let ¥ be a forward complete control system, which is BRS and is
continuous near equilibrium.
3 a noncoercive ISS Lyapunov function for ¥, then ¥ is ISS.
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Application I: Non-coercive ISS LFs

Theorem (Mironchenko, Wirth, IEEE 2018,

Jacob, Mironchenko, Partington, Wirth, CDC 2018)

Let Y be a forward complete control system, which is BRS and is
continuous near equilibrium.

3 a noncoercive ISS Lyapunov function for ¥, then ¥ is ISS.

@ YisFCA3dnc-LF = X is ULIM.
@ ¥ is FC A continuity A 3nc-LF = X is ULS.
@ ¥ is BRS A continuity A 3nc-LF = X isISS.
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Application I: Non-coercive ISS LFs

Theorem (Mironchenko, Wirth, IEEE 2018,

Jacob, Mironchenko, Partington, Wirth, CDC 2018)

Let Y be a forward complete control system, which is BRS and is
continuous near equilibrium.
3 a noncoercive ISS Lyapunov function for X, then ¥ is ISS.

Proof.
@ YisFCA3dnc-LF = X is ULIM.
@ ¥ is FC A continuity A 3nc-LF = X is ULS.
@ ¥ is BRS A continuity A 3nc-LF = X isISS.

O

v

Note, that we cannot resort in the proof to the comparison principle or
some linear methods.
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Example (Jacob, Mironchenko, Partington, Wirth, CDC 2018)

Xt(§7 t) = X§§(£7 t)a ‘E € (07 1)7 t> 07
x(0,t)=0, x(1,t)=u(t), t>0.

We choose X = [2(0,1), U=C, B=4¢,
Af =1, feD(A):={feH0,1)| f(0) = f(1) = 0}

@ Ais a self-adjoint operator on X

@ A generates an exponentially stable analytic Cy-semigroup on X
@ Be L(U, X 1) is oo-admissible

@ A non-coercive ISS Lyapunov function is given by:

1 1
V(x) = —(A"x,x)x = /0 (/£ (S T)X(T)d7> x(€)de

@ No coercive ISS LFs are known for this system.

Andrii Mironchenko Characterizations of ISS and I1SpS Wirzburg, 2018 14 /24



Input-to-state practical stability (ISpS)

Let A C X.

ISpSwrt A & 3JBeKL,v€ Ky, > 0:
xeXt=0,uel = ot x,u)lla < B(x].a, ) +([ull)+c.

ISpS & Jaboundedset A C X: X isISpS w.r.t. A.
ISSwrt A &  ISpS w.r.t. A with ¢ :=0.
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Input-to-state practical stability (ISpS)

Let A C X.
ISpSwrt A & 3JBeKL,v€ Ky, > 0:
xeX,t=0,ucU = ot x,u)lla < B(lIx]a, ) +~(lluller) +c.
ISpS & dJaboundedset A C X: ¥ is ISpS w.r.t. A.
ISSwrt A & ISpS w.r.t. A with ¢ := 0.

Why ISpS?

@ ltis often impossible or too costly to construct a feedback, which makes
the system ISS

| A

@ Quantized control

@ Funnel control
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Application IlI: Criteria of ISpS

@ Our next aim is to obtain the criteria of ISpS

@ Some of these characterizations are new (and stronger than
existing ones) even for ODE systems.

@ Simple application of ISS characterizations is not possible. New
ideas will be needed.
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Application IlI: Criteria of ISpS

@ Our next aim is to obtain the criteria of ISpS

@ Some of these characterizations are new (and stronger than
existing ones) even for ODE systems.

@ Simple application of ISS characterizations is not possible. New
ideas will be needed.

Definition
Let X = (X,U, ¢) be given.
@ A c Xis called s-invariant if:
t>0,xc A |ullu<s = ot x,u)eA

@ An s-invariant set A C X is called robustly s-invariant if:
Ve > 0,Vh> 036 = (e, h) > 0:

te[0,h], lIxlla <, [[ullu <6 = [lo(t X, u)|a <e.

Andrii Mironchenko Characterizations of ISS and ISpS Wirzburg, 2018 16/24



Uniform limit property (A.M., F. Wirth, 2018)

Definition (A.M., F. Wirth, 2018)
ULIM & 3J~7eK:Ve>0,Yr>0 3r=r1(er):

IXla<r, uetd = 3t<7(r): [[¢(t, X, u)ll.a <e+([ulleg)
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Uniform limit property (A.M., F. Wirth, 2018)

Definition (A.M., F. Wirth, 2018)
ULIM & 3J~7eK:Ve>0,Yr>0 3r=r1(er):

IXla<r, uetd = 3t<7(r): [[¢(t, X, u)ll.a <e+([ulleg)

lo(t, x. u)llx
[ DIIIIIIIIINNET TN s
————————————— R R ST ()
o | |
t(x,u,¢) t(x,u,5) t
Related concepts are: (uniform) weak attractivity, recursivity. )
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Main ISpS Result

Theorem (AM, Accepted to TAC 2018))

Consider a BRS system (EE) satisfying

@ f: X x U— X is Lipschitz continuous on bounded subsets of X,
uniformly with respect to the second argument.

@ f(x,-) is continuous for all x € X.
The following statements are equivalent:
Q X isISpS
© Vs > 0 there is a bounded s-invariant set A C X: ¥ is ISS wrt A.
© There is a bounded set A C X: ¥ is ULIM w.r.t. A.

Andrii Mironchenko Characterizations of ISS and ISpS Wirzburg, 2018 18/24



Proving the main result: understanding ULIM

Definition
ULIM & 37eK:Ve>0,Vr>0 37 =1(e,r):

IXla<r uctd = 3t<7(r): [lo(t,x,u)a <e+(]ule)-
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Proving the main result: understanding ULIM

Definition
ULIM & 3F3~4eK:Ve>0,Vr>0 3r=r(er):

IXla<r, ueld = 3t<7(r): |l¢(t, X, u)lla <e+(]|ulu)

Ac XisULIM = any 4> Ais ULIM.

e

Can we find A > A with stronger properties than ULIM? J

Proposition (AM, Accepted to IEEE TAC 2018)

Let: A C X be a bounded (not necessarily 0-invariant) set.
Ve > 0 denote
AE,’Y = {¢(t,X, U) : t€ R+7 X e BE('A)a ||U||u S ’7_1(%)}'

Y isBRS N X isULIMw.rt. A
= Ve >0 A isbounded, v~ '(5)-invariant and  is ISS w.r.t. A..

v
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Theorem (Characterization of ISpS (AM, Accepted to TAC, 2018))

Consider a BRS system (EE) with a Lipschitz f. The following
Statements are equivalent:

Q@ X islISpS
@ Vs > 0 there is a bounded s-invariant set A ¢ X: ¥ is ISS wrt A.
© Thereis abounded set A c X: X is ULIM w.r.t. A.

This theorem can be generalized to a much more broad class of
systems including:

@ evolution equations in Banach spaces
@ time-delay systems
@ switched systems (with co number of switching modes)
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Theorem (Characterization of ISpS (AM, Accepted to TAC, 2018))

Consider a BRS system (EE) with a Lipschitz f. The following
Statements are equivalent:

Q@ X islISpS
@ Vs > 0 there is a bounded s-invariant set A ¢ X: ¥ is ISS wrt A.
© Thereis abounded set A c X: X is ULIM w.r.t. A.

This theorem can be generalized to a much more broad class of
systems including:

@ evolution equations in Banach spaces
@ time-delay systems
@ switched systems (with co number of switching modes)

Specialization of the results to the ODE case is also of interest. J
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ISpS of ODEs

x = f(x,u) (ODE)

@ f:R"x R™— R"is locally Lipschitz wrt x, uniformly wrt u
@ U = Lo(Ry,R™)

Proposition (AM, F. Wirth, IEEE TAC 2018)

Let A c R" be a bounded set.
(ODE)is ULIMw.rt. A <« (ODE)is LIMw.r.t. A.

Andrii Mironchenko Characterizations of ISS and ISpS Wirzburg, 2018



ISpS of ODEs

x = f(x,u) (ODE)

@ f:R"x R™— R"is locally Lipschitz wrt x, uniformly wrt u
@ U = Lo(Ry,R™)

Proposition (AM, F. Wirth, IEEE TAC 2018)

Let A c R" be a bounded set.
(ODE)is ULIMw.rt. A <« (ODE)is LIMw.r.t. A.

Proposition (Lin, Sontag, Wang, SICON 1996)

(ODE)is FC < (ODE)is BRS.
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ISpS of ODEs

Proposition (E. Sontag and Y. Wang, 1996)

@ (ODE)isISpS <« thereis a compact O-invariant set A C R”
s.t. (ODE) is ISS w.r.t. A
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ISpS of ODEs

Proposition (E. Sontag and Y. Wang, 1996)

@ (ODE)isISpS <« thereis a compact O-invariant set A C R”
s.t. (ODE) is ISS w.r.t. A

Next result substantially strengthens above findings J
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ISpS of ODEs

Proposition (E. Sontag and Y. Wang, 1996)

@ (ODE)isISpS <« thereis a compact O-invariant set A ¢ R”
s.t. (ODE) is ISSw.r.t. A

Next result substantially strengthens above findings ]

Theorem (AM, IEEE TAC 2018)

Let (ODE) be forward-complete. The following statements are
equivalent:

@ (ODE) is ISpS

@ Forany s > 0 there is a compact s-invariant set A c R": (ODE) is
ISS w.rt. A.

© There is a bounded set A C R": (ODE) is LIM w.r.t. A.
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How to check ULIM property?

V : X — R, is called a noncoercive ISS Lyapunov function, if there
exist o, a € K and o € K such that

0 < V(x) < ¢a(lxllx), VvxeX

Vu(x) < —a(lIx|lx) + o(llul) Vx € X,Yuel.
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How to check ULIM property?

V : X — R, is called a noncoercive ISS Lyapunov function, if there
exist o, a € K and o € K such that

0 < V(x) <¢2(lxllx), vxeX

Vu(x) < —a(|Ixllx) + o(llul) ¥x € X, Vu €. |

Proposition (AM, F. Wirth, IEEE TAC, 2018)

Y isFC A Visanon-coercive ISS-LF = ¥ is ULIM.

Wiirzburg, 2018
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How to check ULIM property?

V : X — R, is called a noncoercive ISS Lyapunov function, if there
exist o, a € K and o € K such that

0 < V(x) <¢2(lxllx), vxeX

Vu(x) < —a(lIx|lx) + o(llul) Vx € X,Yuel.

Proposition (AM, F. Wirth, IEEE TAC, 2018)

Y isFC A Visanon-coercive ISS-LF = ¥ is ULIM.

Y isBRS A Visanon-coercive ISS-LF = X is ISpS.
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Overview

Outcomes

@ ISS & ULIM A BRS A 0-ULS

@ BRS A continuity near equilibrium A non-coercive ISSLF = ISS

@ ISpS results:

@ ISpS < BRS A dbounded A C X: X is ULIMw.r.t. A
o For ODEs: ISpS <« dbounded A C R™: T is LIMw.r.t. A
e BRS A non-coercive ISSLF = ISpS
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Future research

@ Understanding non-coercive ISS Lyapunov functions

@ Proof of general small-gain theorems in trajectory form
@ Time-delay systems:

o Relaxed LK functionals for TDS (posed by Antoine)
o Improve ISS characterizations for TDS
o Small-gain theorems for time-delay systems
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