Criteria for practical input-to-state stability

Andrii Mironchenko

joint work with:
Birgit Jacob, Jonathan Partington and Fabian Wirth

Faculty of Mathematics and Computer Science University of Passau

SCINDIS 2018 Würzburg 12 October 2018

www.mironchenko.com

Class of systems

$$\begin{cases} \dot{x}(t) = Ax(t) + f(x(t), u(t)), & x(t) \in D(A) \subset X, \\ x(0) = x_0. \end{cases}$$

- $\mathcal{U} = PC(\mathbb{R}_+, U)$
- $Ax = \lim_{t\to +0} \frac{1}{t} (T(t)x x).$
- T is a C_0 -semigroup.
- *f* is a Lipschitz continuous perturbation.

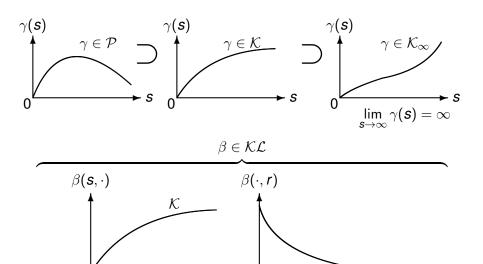
 $x \in C([0, T], X)$ is a mild solution iff

$$x(t) = T(t)x_0 + \int_0^t T(t-s)f(x(s), u(s))ds.$$

Most of results hold for much more general systems, inlcuding:

- some classes of boundary control systems
- time-delay systems
- ullet switched systems (with ∞ number of switching modes)
- ...

Comparison functions

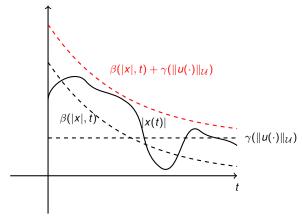


s

Input-to-state stability

Definition (ISS)

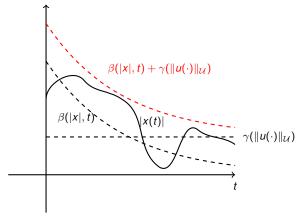
ISS :
$$\Leftrightarrow \exists \beta \in \mathcal{KL}, \gamma \in \mathcal{K}_{\infty}$$
: $\forall t \geq 0, \forall x \in X, \forall u \in \mathcal{U}$
 $\|\phi(t, x, u)\|_{X} \leq \beta(\|x\|_{X}, t) + \gamma(\|u\|_{\mathcal{U}}).$



Input-to-state stability

Definition (Input-to-state practical stability)

ISpS :
$$\Leftrightarrow \exists \beta \in \mathcal{KL}, \ \gamma \in \mathcal{K}_{\infty}, \ \exists c > 0: \ \forall t \geq 0, \ \forall x \in X, \ \forall u \in \mathcal{U}$$
$$\|\phi(t, x, u)\|_{X} \leq \beta(\|x\|_{X}, t) + \gamma(\|u\|_{\mathcal{U}}) + \frac{c}{c}.$$



Infinite-dimensional ISS theory: 2007 – now

- M. Ahmadi, F. Bribiesca Argomedo, A. Bao, A. Chaillet,
- Y. Chitour, S. Dashkovskiy, G. Is. Detorakis, M. Edalatzadeh,
- Y.-P. Guo, H. Ito, B. Jacob, B. Jayawardhana, Z.-P. Jiang,
- I. Karafyllis, M. Krstic, H. Lhachemi, T. Liu, H. Logemann,
- S. Marx, F. Mazenc, AM, K. Morris, R. Nabiullin, Y. Orlov,
- S. Palfi, A. Papachristodoulou, J. R. Partington, A. Pisano,
- C. Prieur, E. P. Ryan, D. Saussie, J. Schmid, F. Schwenninger,
- S. Senova, R. Shorten, A. Tanwani, S. Tarbouriech,
- G. Valmorbida, J.-M. Wang, F. Wirth, E. Witrant, L. Zhang,
- Y.-L. Zhang, J. Zheng, G. Zhu, H. Zwart, ...

Infinite-dimensional ISS theory: 2007 – now

- M. Ahmadi, F. Bribiesca Argomedo, A. Bao, A. Chaillet,
- Y. Chitour, S. Dashkovskiy, G. Is. Detorakis, M. Edalatzadeh,
- Y.-P. Guo, H. Ito, B. Jacob, B. Jayawardhana, Z.-P. Jiang,
- I. Karafyllis, M. Krstic, H. Lhachemi, T. Liu, H. Logemann,
- S. Marx, F. Mazenc, AM, K. Morris, R. Nabiullin, Y. Orlov,
- S. Palfi, A. Papachristodoulou, J. R. Partington, A. Pisano,
- C. Prieur, E. P. Ryan, D. Saussie, J. Schmid, F. Schwenninger,
- S. Senova, R. Shorten, A. Tanwani, S. Tarbouriech,
- G. Valmorbida, J.-M. Wang, F. Wirth, E. Witrant, L. Zhang,
- Y.-L. Zhang, J. Zheng, G. Zhu, H. Zwart, ...

> 2/3 of papers appeared since 2016.

Infinite-dimensional ISS theory: 2007 – now

- M. Ahmadi, F. Bribiesca Argomedo, A. Bao, A. Chaillet,
- Y. Chitour, S. Dashkovskiy, G. Is. Detorakis, M. Edalatzadeh,
- Y.-P. Guo, H. Ito, B. Jacob, B. Jayawardhana, Z.-P. Jiang,
- I. Karafyllis, M. Krstic, H. Lhachemi, T. Liu, H. Logemann,
- S. Marx, F. Mazenc, AM, K. Morris, R. Nabiullin, Y. Orlov,
- S. Palfi, A. Papachristodoulou, J. R. Partington, A. Pisano,
- C. Prieur, E. P. Ryan, D. Saussie, J. Schmid, F. Schwenninger,
- S. Senova, R. Shorten, A. Tanwani, S. Tarbouriech,
- G. Valmorbida, J.-M. Wang, F. Wirth, E. Witrant, L. Zhang,
- Y.-L. Zhang, J. Zheng, G. Zhu, H. Zwart, ...

> 2/3 of papers appeared since 2016.

Time-delay results are not in the above list (were already a mature subject at 2007)

Motivation

Some milestones of ISpS theory of ODE systems

- 1989 Sontag introduces ISS
- 1994 Jiang, Teel, Praly introduce ISpS and prove nonlinear small-gain theorem for couplings of 2 systems
- 1995,1996 Sontag, Wang show foundational characterizations of ISS as well as partially characterized ISpS.
 - 2007 Dashkovskiy, Rüffer, Wirth prove (using characterizations of ISS) nonlinear small-gain theorem for couplings of *n* systems

Motivation

Some milestones of ISpS theory of ODE systems

- 1989 Sontag introduces ISS
- 1994 Jiang, Teel, Praly introduce ISpS and prove nonlinear small-gain theorem for couplings of 2 systems
- 1995,1996 Sontag, Wang show foundational characterizations of ISS as well as partially characterized ISpS.
 - 2007 Dashkovskiy, Rüffer, Wirth prove (using characterizations of ISS) nonlinear small-gain theorem for couplings of *n* systems

Motivation

Some milestones of ISpS theory of ODE systems

- 1989 Sontag introduces ISS
- 1994 Jiang, Teel, Praly introduce ISpS and prove nonlinear small-gain theorem for couplings of 2 systems
- 1995,1996 Sontag, Wang show foundational characterizations of ISS as well as partially characterized ISpS.
 - 2007 Dashkovskiy, Rüffer, Wirth prove (using characterizations of ISS) nonlinear small-gain theorem for couplings of *n* systems

Recall that for ODEs

- $|\phi(t,x,0)| \le \beta(t,|x|) \quad \Leftrightarrow \quad \text{Global asymptotic stability}$
 - ⇔ Local stability ∧ Global attractivity

Sontag and Wang generalized this result to the ISS setting.

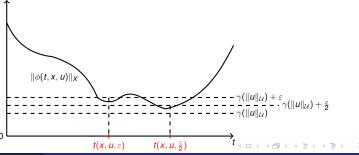
LIM :
$$\Leftrightarrow \exists \gamma \in \mathcal{K}_{\infty}$$
: $\forall x \in X$, $\forall u \in \mathcal{U}$, $\forall \varepsilon > 0 \ \exists T = T(\varepsilon, x, u)$:
$$\|\phi(t, x, u)\|_{X} \leq \varepsilon + \gamma(\|u\|_{\mathcal{U}}).$$
ULIM : $\Leftrightarrow \exists \gamma \in \mathcal{K}$: $\forall \varepsilon > 0$, $\forall r > 0 \ \exists \tau = \tau(\varepsilon, r)$:
$$\|x\|_{X} \leq r, \ u \in \mathcal{U} \ \Rightarrow \ \exists t \leq \tau(r) : \ \|\phi(t, x, u)\|_{X} \leq \varepsilon + \gamma(\|u\|_{\mathcal{U}}).$$

LIM :
$$\Leftrightarrow \exists \gamma \in \mathcal{K}_{\infty}$$
: $\forall x \in X, \forall u \in \mathcal{U}, \forall \varepsilon > 0 \exists T = T(\varepsilon, x, u)$:

$$\|\phi(t, x, u)\|_{X} \leq \varepsilon + \gamma(\|u\|_{\mathcal{U}}).$$

ULIM :
$$\Leftrightarrow \exists \gamma \in \mathcal{K} : \forall \varepsilon > 0, \forall r > 0 \ \exists \tau = \tau(\varepsilon, r)$$
:

$$\|x\|_X \le r, \ u \in \mathcal{U} \ \Rightarrow \ \exists t \le \tau(r): \ \|\phi(t,x,u)\|_X \le \varepsilon + \gamma(\|u\|_{\mathcal{U}}).$$



LIM :
$$\Leftrightarrow \exists \gamma \in \mathcal{K}_{\infty}$$
: $\forall x \in X$, $\forall u \in \mathcal{U}$, $\forall \varepsilon > 0 \ \exists T = T(\varepsilon, x, u)$:
$$\|\phi(t, x, u)\|_{X} \leq \varepsilon + \gamma(\|u\|_{\mathcal{U}}).$$
ULIM : $\Leftrightarrow \exists \gamma \in \mathcal{K}$: $\forall \varepsilon > 0$, $\forall r > 0 \ \exists \tau = \tau(\varepsilon, r)$:
$$\|x\|_{X} \leq r, \ u \in \mathcal{U} \ \Rightarrow \ \exists t \leq \tau(r) : \ \|\phi(t, x, u)\|_{X} \leq \varepsilon + \gamma(\|u\|_{\mathcal{U}}).$$

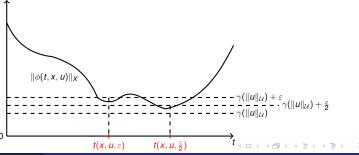
- Limit property is a reminiscent of a so-called 'weak attractivity'.
- Limit property is closely related to the concept of recurrent sets.

LIM :
$$\Leftrightarrow \exists \gamma \in \mathcal{K}_{\infty}$$
: $\forall x \in X, \forall u \in \mathcal{U}, \forall \varepsilon > 0 \exists T = T(\varepsilon, x, u)$:

$$\|\phi(t, x, u)\|_{X} \leq \varepsilon + \gamma(\|u\|_{\mathcal{U}}).$$

ULIM :
$$\Leftrightarrow \exists \gamma \in \mathcal{K} : \forall \varepsilon > 0, \forall r > 0 \ \exists \tau = \tau(\varepsilon, r)$$
:

$$\|x\|_X \le r, \ u \in \mathcal{U} \ \Rightarrow \ \exists t \le \tau(r): \ \|\phi(t,x,u)\|_X \le \varepsilon + \gamma(\|u\|_{\mathcal{U}}).$$



Result of Sontag and Wang

Definition (Stability)

ULS :
$$\Leftrightarrow \exists r > 0, \exists \sigma, \gamma \in \mathcal{K}_{\infty}$$
:

$$t \geq 0, x \in B_r, u \in B_{r,\mathcal{U}} \Rightarrow \|\phi(t,x,u)\|_X \leq \sigma(\|x\|_X) + \gamma(\|u\|_{\mathcal{U}}).$$

0-ULS :
$$\Leftrightarrow \exists r > 0, \exists \sigma \in \mathcal{K}_{\infty}$$
:

$$t \geq 0, x \in \mathcal{B}_r \Rightarrow \|\phi(t, x, 0)\|_X \leq \sigma(\|x\|_X).$$

Theorem (Sontag, Wang, TAC 1996)

Let FC:= "forward-complete".

(ODE):
$$\dot{x} = f(x, u), \quad x(t) \in \mathbb{R}^n.$$

(ODE) is ISS \Leftrightarrow (ODE) is FC \land (ODE) is LIM \land (ODE) is 0-ULS

Result of Sontag and Wang

Theorem (Sontag, Wang, TAC 1996)

Let FC:= "forward-complete".

(ODE):
$$\dot{x} = f(x, u), \quad x(t) \in \mathbb{R}^n.$$

(ODE) is ISS \Leftrightarrow (ODE) is FC \land (ODE) is LIM \land (ODE) is 0-ULS

Result of Sontag and Wang

Theorem (Sontag, Wang, TAC 1996)

Let FC:= "forward-complete".

(ODE):
$$\dot{x} = f(x, u), \quad x(t) \in \mathbb{R}^n.$$

(ODE) is ISS \Leftrightarrow (ODE) is FC \land (ODE) is LIM \land (ODE) is 0-ULS

Proposition (Mironchenko, Wirth, TAC 2018)

$$(ODE)$$
 is LIM \Leftrightarrow (ODE) is ULIM

Characterizations of ISS for ∞-dim systems

Characterizations due to Sontag and Wang cannot be straightforwardly transferred to ∞ -dim. New notions and more uniformity is needed

Definition

 Σ has bounded reachability sets (BRS), if:

$$C>0, \ \tau>0 \quad \Rightarrow \quad \sup_{\|x\|_X\leq C, \ \|u\|_{\mathcal{U}}\leq C, \ t\in[0,\tau]} \|\phi(t,x,u)\|_X<\infty.$$

Theorem (Mironchenko, Wirth, TAC 2018)

Consider a forward-complete system

(EE):
$$\dot{x} = Ax + f(x, u), \quad (A, D(A)) : X \to X.$$

(EE) is ISS \Leftrightarrow (EE) is BRS \wedge (EE) is ULIM \wedge (EE) is 0-ULS

Characterizations of ISS for ∞-dim systems

Importance

- Relations of ISS to other stability notions, e.g. nonlinear $L_2 \rightarrow L_2$ -gain
- Basis for the proof of general small-gain theorems
- Essential for the theory of non-coercive ISS Lyapunov function
- (Hopefully) will lead to improvements of Lyapunov-Krasovskii methodology for time-delay systems
- Extensions to practical ISS
- ...

Characterizations of ISS for ∞-dim systems

Importance

- Relations of ISS to other stability notions, e.g. nonlinear $L_2 \rightarrow L_2$ -gain
- Basis for the proof of general small-gain theorems
- Essential for the theory of non-coercive ISS Lyapunov function
- (Hopefully) will lead to improvements of Lyapunov-Krasovskii methodology for time-delay systems
- Extensions to practical ISS
- ...

Characterizations of ISS for ∞ -dim systems

- A. M.. Local input-to-state stability: Characterizations and counterexamples.
 Systems & Control Letters, 87:23–28, 2016.
- A. M., F. Wirth. Characterizations of input-to-state stability for infinite-dimensional systems. IEEE TAC, 63 (6): 1602–1617, 2018.

Definition

 $V: X \to \mathbb{R}_+$ is a non-coercive ISS Lyapunov function for $\Sigma = (X, \mathcal{U}, \phi)$, if $\exists \ \psi_2, \alpha \in \mathcal{K}_{\infty}, \ \sigma \in \mathcal{K}$:

$$0 < V(x) \le \psi_2(\|x\|_X), \quad \forall x \in X$$
 (1)

and

$$\dot{V}_{u}(x) \leq -\alpha(\|x\|_{X}) + \sigma(\|u\|_{\mathcal{U}}), \quad \forall x \in X, \quad u \in \mathcal{U}.$$
 (2)

Definition

 $V: X \to \mathbb{R}_+$ is a non-coercive ISS Lyapunov function for $\Sigma = (X, \mathcal{U}, \phi)$, if $\exists \ \psi_2, \alpha \in \mathcal{K}_{\infty}, \ \sigma \in \mathcal{K}$:

$$0 < V(x) \le \psi_2(\|x\|_X), \quad \forall x \in X$$
 (1)

and

$$\dot{V}_{u}(x) \leq -\alpha(\|x\|_{X}) + \sigma(\|u\|_{\mathcal{U}}), \quad \forall x \in X, \quad u \in \mathcal{U}.$$
 (2)

Non-coercive LFs are frequently used for linear systems.

Next we show an essentially nonlinear result.

Definition

 $V: X \to \mathbb{R}_+$ is a non-coercive ISS Lyapunov function for $\Sigma = (X, \mathcal{U}, \phi)$, if $\exists \ \psi_2, \alpha \in \mathcal{K}_{\infty}, \ \sigma \in \mathcal{K}$:

$$0 < V(x) \le \psi_2(\|x\|_X), \quad \forall x \in X$$
 (1)

and

$$\dot{V}_{u}(x) \leq -\alpha(\|x\|_{X}) + \sigma(\|u\|_{\mathcal{U}}), \quad \forall x \in X, \quad u \in \mathcal{U}.$$
 (2)

Non-coercive LFs are frequently used for linear systems.

Next we show an essentially nonlinear result.

Theorem (Mironchenko, Wirth, IEEE 2018, Jacob, Mironchenko, Partington, Wirth, CDC 2018)

Let Σ be a forward complete control system, which is BRS and is continuous near equilibrium.

 \exists a noncoercive ISS Lyapunov function for Σ , then Σ is ISS.

```
Theorem (Mironchenko, Wirth, IEEE 2018,
Jacob, Mironchenko, Partington, Wirth, CDC 2018)
```

Let Σ be a forward complete control system, which is BRS and is continuous near equilibrium.

 \exists a noncoercive ISS Lyapunov function for Σ , then Σ is ISS.

Proof.

- Σ is FC \wedge \exists nc-LF \Rightarrow Σ is ULIM.
- Σ is FC \wedge continuity \wedge \exists nc-LF \Rightarrow Σ is ULS.
- Σ is BRS \wedge continuity $\wedge \exists$ nc-LF $\Rightarrow \Sigma$ is ISS.

Theorem (Mironchenko, Wirth, IEEE 2018,
Jacob, Mironchenko, Partington, Wirth, CDC 2018)

Let Σ be a forward complete control system, which is BRS and is continuous near equilibrium.

 \exists a noncoercive ISS Lyapunov function for Σ , then Σ is ISS.

Proof.

- Σ is FC \wedge \exists nc-LF \Rightarrow Σ is ULIM.
- Σ is FC \wedge continuity $\wedge \exists$ nc-LF $\Rightarrow \Sigma$ is ULS.
- Σ is BRS \wedge continuity $\wedge \exists$ nc-LF $\Rightarrow \Sigma$ is ISS.

Note, that we cannot resort in the proof to the comparison principle or some linear methods.

Example (Jacob, Mironchenko, Partington, Wirth, CDC 2018)

$$x_t(\xi, t) = x_{\xi\xi}(\xi, t), \quad \xi \in (0, 1), \ t > 0,$$

 $x(0, t) = 0, \quad x(1, t) = u(t), \quad t > 0.$

We choose
$$X=L^2(0,1), \quad U=\mathbb{C}, \quad B=\delta_1',$$

$$Af=f'', \quad f\in D(A):=\left\{f\in H^2(0,1)\mid f(0)=f(1)=0\right\}.$$

- A is a self-adjoint operator on X
- A generates an exponentially stable analytic C₀-semigroup on X
- $B \in L(U, X_{-1})$ is ∞ -admissible
- A non-coercive ISS Lyapunov function is given by:

$$V(x) = -\langle A^{-1}x, x \rangle_X = \int_0^1 \left(\int_{\xi}^1 (\xi - \tau) x(\tau) d\tau \right) \overline{x(\xi)} d\xi$$

No coercive ISS LFs are known for this system.

Input-to-state practical stability (ISpS)

Definition

Let $\mathcal{A} \subset X$.

ISpS wrt
$$\mathcal{A}:\Leftrightarrow \exists \beta \in \mathcal{KL}, \gamma \in \mathcal{K}_{\infty}, c > 0$$
:
 $x \in \mathcal{X}, t \geq 0, u \in \mathcal{U} \Rightarrow \|\phi(t, x, u)\|_{\mathcal{A}} \leq \beta(\|x\|_{\mathcal{A}}, t) + \gamma(\|u\|_{\mathcal{U}}) + c.$

ISpS :⇔ \exists a bounded set $A \subset X$: Σ is ISpS w.r.t. A.

ISS wrt $A :\Leftrightarrow$ ISpS w.r.t. A with c := 0.

Input-to-state practical stability (ISpS)

Definition

Let $\mathcal{A} \subset X$.

```
ISpS wrt \mathcal{A}:\Leftrightarrow \exists \beta \in \mathcal{KL}, \gamma \in \mathcal{K}_{\infty}, c > 0:
 x \in \mathcal{X}, t \geq 0, u \in \mathcal{U} \Rightarrow \|\phi(t, x, u)\|_{\mathcal{A}} \leq \beta(\|x\|_{\mathcal{A}}, t) + \gamma(\|u\|_{\mathcal{U}}) + c.
```

ISpS : \Leftrightarrow ∃ a bounded set $A \subset X$: Σ is ISpS w.r.t. A.

ISS wrt $A :\Leftrightarrow$ ISpS w.r.t. A with c := 0.

Why ISpS?

- It is often impossible or too costly to construct a feedback, which makes the system ISS
- Quantized control
- Funnel control
- •

Application II: Criteria of ISpS

ISpS plan

- Our next aim is to obtain the criteria of ISpS
- Some of these characterizations are new (and stronger than existing ones) even for ODE systems.
- Simple application of ISS characterizations is not possible. New ideas will be needed.

Application II: Criteria of ISpS

ISpS plan

- Our next aim is to obtain the criteria of ISpS
- Some of these characterizations are new (and stronger than existing ones) even for ODE systems.
- Simple application of ISS characterizations is not possible. New ideas will be needed.

Definition

Let $\Sigma = (X, \mathcal{U}, \phi)$ be given.

• $A \subset X$ is called *s*-invariant if:

$$t \geq 0, x \in \mathcal{A}, \|u\|_{\mathcal{U}} \leq s \quad \Rightarrow \quad \phi(t, x, u) \in \mathcal{A}.$$

• An *s*-invariant set $A \subset X$ is called robustly *s*-invariant if: $\forall \varepsilon > 0, \forall h > 0 \ \exists \delta = \delta(\varepsilon, h) > 0$:

$$t \in [0, h], \|x\|_{\mathcal{A}} \leq \delta, \|u\|_{\mathcal{U}} \leq \delta \Rightarrow \|\phi(t, x, u)\|_{\mathcal{A}} \leq \varepsilon.$$

Uniform limit property (A.M., F. Wirth, 2018)

Definition (A.M., F. Wirth, 2018)

ULIM :
$$\Leftrightarrow \exists \gamma \in \mathcal{K}: \forall \varepsilon > 0, \forall r > 0 \exists \tau = \tau(\varepsilon, r):$$

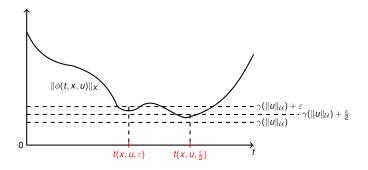
$$\|\mathbf{x}\|_{\mathcal{A}} \leq \mathbf{r}, \ \mathbf{u} \in \mathcal{U} \ \Rightarrow \ \exists t \leq \tau(\mathbf{r}): \ \|\phi(t, \mathbf{x}, \mathbf{u})\|_{\mathcal{A}} \leq \varepsilon + \gamma(\|\mathbf{u}\|_{\mathcal{U}})$$

Uniform limit property (A.M., F. Wirth, 2018)

Definition (A.M., F. Wirth, 2018)

ULIM :
$$\Leftrightarrow \exists \gamma \in \mathcal{K}: \forall \varepsilon > 0, \forall r > 0 \exists \tau = \tau(\varepsilon, r):$$

$$\|\mathbf{x}\|_{\mathcal{A}} \leq \mathbf{r}, \ \mathbf{u} \in \mathcal{U} \ \Rightarrow \ \exists \mathbf{t} \leq \tau(\mathbf{r}): \ \|\phi(\mathbf{t}, \mathbf{x}, \mathbf{u})\|_{\mathcal{A}} \leq \varepsilon + \gamma(\|\mathbf{u}\|_{\mathcal{U}})$$



Related concepts are: (uniform) weak attractivity, recursivity.

Main ISpS Result

Theorem (AM, Accepted to TAC 2018))

Consider a BRS system (EE) satisfying

- f: X × U → X is Lipschitz continuous on bounded subsets of X, uniformly with respect to the second argument.
- $f(x, \cdot)$ is continuous for all $x \in X$.

The following statements are equivalent:

- Σ is ISpS
- ② $\forall s > 0$ there is a bounded s-invariant set $A \subset X$: Σ is ISS wrt A.
- **3** There is a bounded set $A \subset X$: Σ is ULIM w.r.t. A.

Proving the main result: understanding ULIM

ULIM :
$$\Leftrightarrow \exists \gamma \in \mathcal{K}: \forall \varepsilon > 0, \forall r > 0 \ \exists \tau = \tau(\varepsilon, r):$$

$$\|x\|_{\mathcal{A}} \leq r, \ u \in \mathcal{U} \ \Rightarrow \ \exists t \leq \tau(r): \ \|\phi(t, x, u)\|_{\mathcal{A}} \leq \varepsilon + \gamma(\|u\|_{\mathcal{U}}).$$

Proving the main result: understanding ULIM

Definition

ULIM :
$$\Leftrightarrow \exists \gamma \in \mathcal{K}: \forall \varepsilon > 0, \forall r > 0 \ \exists \tau = \tau(\varepsilon, r):$$

$$\|x\|_{\mathcal{A}} \leq r, \ u \in \mathcal{U} \ \Rightarrow \ \exists t \leq \tau(r): \ \|\phi(t, x, u)\|_{\mathcal{A}} \leq \varepsilon + \gamma(\|u\|_{\mathcal{U}}).$$

 $\mathcal{A} \subset X$ is ULIM \Rightarrow any $\tilde{\mathcal{A}} \supset \mathcal{A}$ is ULIM.

Proving the main result: understanding ULIM

Definition

ULIM :
$$\Leftrightarrow \exists \gamma \in \mathcal{K}: \forall \varepsilon > 0, \forall r > 0 \ \exists \tau = \tau(\varepsilon, r):$$

$$\|x\|_{\mathcal{A}} \leq r, \ u \in \mathcal{U} \ \Rightarrow \ \exists t \leq \tau(r): \ \|\phi(t, x, u)\|_{\mathcal{A}} \leq \varepsilon + \gamma(\|u\|_{\mathcal{U}}).$$

$$\mathcal{A} \subset X$$
 is ULIM \Rightarrow any $\tilde{\mathcal{A}} \supset \mathcal{A}$ is ULIM.

Can we find $\hat{A} \supset A$ with stronger properties than ULIM?

Proving the main result: understanding ULIM

Definition

ULIM :
$$\Leftrightarrow \exists \gamma \in \mathcal{K}: \forall \varepsilon > 0, \forall r > 0 \exists \tau = \tau(\varepsilon, r):$$

$$\|x\|_{\mathcal{A}} \leq r, \ u \in \mathcal{U} \ \Rightarrow \ \exists t \leq \tau(r): \ \|\phi(t, x, u)\|_{\mathcal{A}} \leq \varepsilon + \gamma(\|u\|_{\mathcal{U}}).$$

$$\mathcal{A} \subset X$$
 is ULIM \Rightarrow any $\tilde{\mathcal{A}} \supset \mathcal{A}$ is ULIM.

Can we find $\tilde{A} \supset A$ with stronger properties than ULIM?

Proposition (AM, Accepted to IEEE TAC 2018)

Let: $A \subset X$ be a bounded (not necessarily 0-invariant) set.

$$\forall \varepsilon > 0$$
 denote

$$\mathcal{A}_{\varepsilon,\gamma}:=\{\phi(t,x,u):t\in\mathbb{R}_+,\ x\in\mathcal{B}_\varepsilon(\mathcal{A}),\ \|u\|_{\mathcal{U}}\leq \gamma^{-1}(\frac{\varepsilon}{2})\}.$$

 Σ is BRS \wedge Σ is ULIM w.r.t. \mathcal{A}

 $\Rightarrow \forall \varepsilon > 0$ $\mathcal{A}_{\varepsilon}$ is bounded, $\gamma^{-1}(\frac{\varepsilon}{2})$ -invariant and Σ is ISS w.r.t. $\mathcal{A}_{\varepsilon}$.

Theorem (Characterization of ISpS (AM, Accepted to TAC, 2018))

Consider a BRS system (EE) with a Lipschitz f. The following statements are equivalent:

- Σ is ISpS
- ② $\forall s > 0$ there is a bounded s-invariant set $A \subset X$: Σ is ISS wrt A.
- **3** There is a bounded set $A \subset X$: Σ is ULIM w.r.t. A.

This theorem can be generalized to a much more broad class of systems including:

- evolution equations in Banach spaces
- time-delay systems
- switched systems (with ∞ number of switching modes)

Theorem (Characterization of ISpS (AM, Accepted to TAC, 2018))

Consider a BRS system (EE) with a Lipschitz f. The following statements are equivalent:

- Σ is ISpS
- ② $\forall s > 0$ there is a bounded s-invariant set $A \subset X$: Σ is ISS wrt A.
- **3** There is a bounded set $A \subset X$: Σ is ULIM w.r.t. A.

This theorem can be generalized to a much more broad class of systems including:

- evolution equations in Banach spaces
- time-delay systems
- ullet switched systems (with ∞ number of switching modes)

Specialization of the results to the ODE case is also of interest.

$$\dot{x} = f(x, u)$$
 (ODE)

- $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ is locally Lipschitz wrt x, uniformly wrt u
- $\mathcal{U} := L_{\infty}(\mathbb{R}_+, \mathbb{R}^m)$

Proposition (AM, F. Wirth, IEEE TAC 2018)

Let $A \subset \mathbb{R}^n$ be a bounded set.

(ODE) is ULIM w.r.t. $\mathcal{A} \Leftrightarrow (ODE)$ is LIM w.r.t. \mathcal{A} .

$$\dot{x} = f(x, u)$$
 (ODE)

- $f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n$ is locally Lipschitz wrt x, uniformly wrt u
- $\mathcal{U} := L_{\infty}(\mathbb{R}_+, \mathbb{R}^m)$

Proposition (AM, F. Wirth, IEEE TAC 2018)

Let $A \subset \mathbb{R}^n$ be a bounded set.

(ODE) is ULIM w.r.t. $\mathcal{A} \Leftrightarrow$ (ODE) is LIM w.r.t. \mathcal{A} .

Proposition (Lin, Sontag, Wang, SICON 1996)

(ODE) is FC \Leftrightarrow (ODE) is BRS.

Proposition (E. Sontag and Y. Wang, 1996)

• (ODE) is ISpS \Leftrightarrow there is a compact 0-invariant set $\mathcal{A} \subset \mathbb{R}^n$ s.t. (ODE) is ISS w.r.t. \mathcal{A}

Proposition (E. Sontag and Y. Wang, 1996)

• (ODE) is ISpS \Leftrightarrow there is a compact 0-invariant set $\mathcal{A} \subset \mathbb{R}^n$ s.t. (ODE) is ISS w.r.t. \mathcal{A}

Next result substantially strengthens above findings

Proposition (E. Sontag and Y. Wang, 1996)

• (ODE) is ISpS \Leftrightarrow there is a compact 0-invariant set $\mathcal{A} \subset \mathbb{R}^n$ s.t. (ODE) is ISS w.r.t. \mathcal{A}

Next result substantially strengthens above findings

Theorem (AM, IEEE TAC 2018)

Let (ODE) be forward-complete. The following statements are equivalent:

- (ODE) is ISpS
- **②** For any s > 0 there is a compact s-invariant set $A \subset \mathbb{R}^n$: (ODE) is ISS w.r.t. A.
- **3** There is a bounded set $A \subset \mathbb{R}^n$: (ODE) is LIM w.r.t. A.

How to check ULIM property?

Definition

 $V: X \to \mathbb{R}_+$ is called a noncoercive ISS Lyapunov function, if there exist $\psi_2, \alpha \in \mathcal{K}_{\infty}$ and $\sigma \in \mathcal{K}$ such that

$$0 < V(x) \le \psi_2(\|x\|_X), \quad \forall x \in X$$

$$\dot{V}_{u}(x) \leq -\alpha(\|x\|_{X}) + \sigma(\|u\|_{\mathcal{U}}) \quad \forall x \in X, \forall u \in \mathcal{U}.$$

How to check ULIM property?

Definition

 $V: X \to \mathbb{R}_+$ is called a noncoercive ISS Lyapunov function, if there exist $\psi_2, \alpha \in \mathcal{K}_{\infty}$ and $\sigma \in \mathcal{K}$ such that

$$0 < V(x) \le \psi_2(\|x\|_X), \quad \forall x \in X$$

$$\dot{V}_{u}(x) \leq -\alpha(\|x\|_{X}) + \sigma(\|u\|_{\mathcal{U}}) \quad \forall x \in X, \forall u \in \mathcal{U}.$$

Proposition (AM, F. Wirth, IEEE TAC, 2018)

 Σ is FC \wedge V is a non-coercive ISS-LF \Rightarrow Σ is ULIM.

How to check ULIM property?

Definition

 $V: X \to \mathbb{R}_+$ is called a noncoercive ISS Lyapunov function, if there exist $\psi_2, \alpha \in \mathcal{K}_{\infty}$ and $\sigma \in \mathcal{K}$ such that

$$0 < V(x) \le \psi_2(\|x\|_X), \quad \forall x \in X$$

$$V_u(x) \leq -\alpha(\|x\|_X) + \sigma(\|u\|_U) \quad \forall x \in X, \forall u \in U.$$

Proposition (AM, F. Wirth, IEEE TAC, 2018)

 Σ is FC \wedge V is a non-coercive ISS-LF \Rightarrow Σ is ULIM.

Corollary

 Σ is BRS \wedge V is a non-coercive ISS-LF \Rightarrow Σ is ISpS.

Overview

Outcomes

- ISS \Leftrightarrow ULIM \land BRS \land 0-ULS
- BRS \land continuity near equilibrium \land non-coercive ISS LF \Rightarrow ISS
- ISpS results:
 - ISpS \Leftrightarrow BRS \land \exists bounded $A \subset X$: Σ is ULIM w.r.t. A
 - For ODEs: ISpS \Leftrightarrow \exists bounded $A \subset \mathbb{R}^n$: Σ is LIM w.r.t. A
 - ullet BRS \wedge non-coercive ISS LF \Rightarrow ISpS

Overview

Outcomes

- ISS \Leftrightarrow ULIM \land BRS \land 0-ULS
- ullet BRS \wedge continuity near equilibrium \wedge non-coercive ISS LF \Rightarrow ISS
- ISpS results:
 - ISpS \Leftrightarrow BRS \wedge \exists bounded $A \subset X$: Σ is ULIM w.r.t. A
 - For ODEs: ISpS \Leftrightarrow \exists bounded $A \subset \mathbb{R}^n$: Σ is LIM w.r.t. A
 - BRS ∧ non-coercive ISS LF ⇒ ISpS
- A. Mironchenko. Criteria for input-to-state practical stability, to appear in IEEE TAC, https://arxiv.org/abs/1710.10452
- A. Mironchenko, F. Wirth. Characterizations of input-to-state stability for infinite-dimensional systems. IEEE TAC, 63 (6): 1602-1617, 2018.
- B. Jacob, A. Mironchenko, J. Partington and F. Wirth. Remarks on input-to-state stability and noncoercive Lyapunov functions. Accepted to CDC 2018.

Overview

Outcomes

- ISS ⇔ ULIM ∧ BRS ∧ 0-ULS
- BRS \land continuity near equilibrium \land non-coercive ISS LF \Rightarrow ISS
- ISpS results:
 - ISpS \Leftrightarrow BRS \wedge \exists bounded $A \subset X$: Σ is ULIM w.r.t. A
 - For ODEs: ISpS \Leftrightarrow \exists bounded $\mathcal{A} \subset \mathbb{R}^n$: Σ is LIM w.r.t. \mathcal{A}
 - ullet BRS \wedge non-coercive ISS LF \Rightarrow ISpS

Future research

- Understanding non-coercive ISS Lyapunov functions
- Proof of general small-gain theorems in trajectory form
- Time-delay systems:
 - Relaxed LK functionals for TDS (posed by Antoine)
 - Improve ISS characterizations for TDS
 - Small-gain theorems for time-delay systems