# Revisiting stability of positive linear discrete-time systems

#### Jochen Glück, Andrii Mironchenko

Faculty of Mathematics and Computer Science University of Passau

#### MTNS 2022

12 September 2022

Journal paper: Glück, Mironchenko. Stability criteria for positive linear discrete-time systems. Positivity, 2021. www.mironchenko.com

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ショルの

# Linear discrete-time systems in Banach spaces

Let X be a Banach space, and  $T \in \mathcal{L}(X)$ . Consider the discrete-time system

$$x(k+1) = Tx(k), \quad k \in \mathbb{Z}_+ = \{0, 1, 2, \ldots\}.$$
 (1)

#### Definition

(1) is called (uniformly) exponentially stable, if:  $\exists a \in [0, 1), M > 0$ :

$$\|T^k x\| \leq Ma^k \|x\|, \quad x \in X, \quad k \in \mathbb{Z}_+.$$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

э.

# Linear discrete-time systems in Banach spaces

Let X be a Banach space, and  $T \in \mathcal{L}(X)$ . Consider the discrete-time system

$$x(k+1) = Tx(k), \quad k \in \mathbb{Z}_+ = \{0, 1, 2, \ldots\}.$$
 (1)

#### Definition

(1) is called (uniformly) exponentially stable, if:  $\exists a \in [0, 1), M > 0$ :

$$\left\| \mathcal{T}^{k} x \right\| \leq M a^{k} \left\| x \right\|, \quad x \in X, \quad k \in \mathbb{Z}_{+}.$$

Define  $r(T) := \max_{\lambda \in \sigma(T)} |\lambda|$ .

Proposition (Basic (and classic) criterion for exponential stability)

(1) is uniformly exponentially stable  $\Leftrightarrow$  r(T) < 1.

#### For many more criteria see a survey part of

Glück, AM. Stability criteria for positive linear discrete-time systems. Positivity, 2021.

Andrii Mironchenko

Revisiting stability of positive linear discrete-time systems

MTNS 2022

2/16



Under which conditions is an (in)finite interconnection of nonlinear stable systems stable?

< □ > < ⊡ > < ⊡ > < ⊇ > < ⊇ >
MTNS 2022



# Under which conditions is an (in)finite interconnection of nonlinear stable systems stable?

## Small-gain approach

- Associate  $\gamma_{ij} \ge 0$  with the influence of the *j*-th system onto the *i*-th system
- Define a gain operator  $\Gamma := (\gamma_{ij})_{i,j=1}^{\infty} : \ell_{p} \to \ell_{p}, \quad p \ge 1.$
- Then  $r(\Gamma) < 1$  guarantees the stability of the whole network.
- Γ is a positive operator!



# Under which conditions is an (in)finite interconnection of nonlinear stable systems stable?

## Small-gain approach

- Associate  $\gamma_{ij} \ge 0$  with the influence of the *j*-th system onto the *i*-th system
- Define a gain operator  $\Gamma := (\gamma_{ij})_{i,j=1}^{\infty} : \ell_p \to \ell_p, \quad p \ge 1.$
- Then  $r(\Gamma) < 1$  guarantees the stability of the whole network.
- Γ is a positive operator!

### Can we use positivity to derive more powerful criteria for uniform exponential stability?

Andrii Mironchenko

3/16

# **Ordered Banach spaces**

Define

$$\alpha \mathbf{X}^+ + \beta \mathbf{X}^+ := \{ \alpha \mathbf{X} + \beta \mathbf{y} : \mathbf{X}, \mathbf{y} \in \mathbf{X}^+ \}.$$

#### Definition (Ordered Banach space)

An ordered Banach space is a pair  $(X, X^+)$  where X is a real Banach space, and  $X^+ \subseteq X$  is a non-empty closed set such that

- $\alpha X^+ + \beta X^+ \subset X^+ \quad \forall \alpha, \beta \ge 0.$
- $X^+ \cap (-X^+) = \{0\}.$

The set  $X^+$  is called a positive cone in X.

Having a positive cone, one can introduce a partial order on X: for  $x, y \in X$ 

$$x \leq y \quad \Leftrightarrow \quad y - x \in X^+.$$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

### Definition (Systematics of cones)

A cone  $X^+$  in an ordered Banach space X is called:

- total if  $X^+ X^+ = \{x y : x, y \in X^+\}$  is dense in X.
- generating if  $X^+ X^+ = X$ .
- having nonempty interior if int  $(X^+) \neq \emptyset$ .
- normal if there is C > 0:

 $||x|| \le C ||y||$  whenever  $0 \le x \le y$ .

#### Definition (Positive maps)

Let  $(X, X^+)$  be an ordered Banach space. A mapping  $A : X \to X$  is called positive if  $AX^+ \subseteq X^+$ .

### Example (Ordered Euclidean space)

•  $(\mathbb{R}^n, \mathbb{R}^n_+)$  is an ordered Banach space with the order  $x \le y \iff x_i \le y_i, i = 1, ..., n$ .

#### Example (Ordered sequence spaces)

#### Let

• 
$$X = \ell_{\mathcal{P}} := \{x = (x_n) \in \mathbb{R}^{\mathbb{N}} : \|x\|_{\ell_{\mathcal{P}}} < \infty\}, \quad \mathcal{P} \in [1, \infty].$$

•  $\|x\|_{\ell_p} := \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p}$  for  $p < \infty$  and  $\|x\|_{\ell_{\infty}} := \sup_{n=1}^{\infty} |x_n|.$ 

• 
$$\ell_p^+ := \{(x_n)_{n \in \mathbb{Z}_+} \in \ell_p : x_n \ge 0 \ \forall n \in \mathbb{N}\}.$$

#### Then:

- $(\ell_{\rho}, \ell_{\rho}^{+})$  is an ordered Banach space
- $\ell_p^+$  is generating and normal.
- $\boldsymbol{\rho} = \infty \quad \Rightarrow \quad \operatorname{int}(\ell_{\infty}^+) \neq \emptyset.$

(日) (同) (日) (日) (日)

э.

# Criteria for r(T) < 1 for $X = \mathbb{R}^n$ , $X^+ := \mathbb{R}^n_+$

$$x(k+1) = Tx(k), \quad k \in \mathbb{Z}_+ = \{0, 1, 2, \ldots\}.$$

#### Proposition (Well-known criteria for exponential stability of linear discrete-time systems)

Let  $T \in \mathbb{R}^{n \times n}_+$ . Then the following statements are equivalent:

- (i) Spectral small-gain condition: r(T) < 1.
- (ii) Small-gain condition:  $Tx \ge x \quad \forall x \in \mathbb{R}^n_+, x \neq 0.$

(iii) There is a point of strict decay: There are  $\lambda \in (0, 1)$  and  $x \in int(\mathbb{R}^n_+)$ :  $Tx \le \lambda x$ .

≣ ৩৭ে 7/16

# Criteria for r(T) < 1 for $X = \mathbb{R}^n$ , $X^+ := \mathbb{R}^n_+$

$$x(k+1) = Tx(k), \quad k \in \mathbb{Z}_+ = \{0, 1, 2, \ldots\}.$$

#### Proposition (Well-known criteria for exponential stability of linear discrete-time systems)

Let  $T \in \mathbb{R}^{n \times n}_+$ . Then the following statements are equivalent:

- (i) Spectral small-gain condition: r(T) < 1.
- (ii) Small-gain condition:  $Tx \geq x \quad \forall x \in \mathbb{R}^n_+, x \neq 0.$

(iii) There is a point of strict decay: There are  $\lambda \in (0, 1)$  and  $x \in int(\mathbb{R}^n_+)$ :  $Tx \le \lambda x$ .

#### Proof.

(ii)  $\Rightarrow$  (i). Assume that (i) doesn't hold, that is,  $r(T) \ge 1$ . By Perron-Frobenius theorem, there is  $x \in \mathbb{R}^n_+$ ,  $x \ne 0$  so that  $Tx = r(T)x \ge x$ , which contradicts to (ii).

2

7/16

イロン イ理 とく ヨン イヨン

# What about infinite-dimensions?

### Proposition (Well-known criteria for exponential stability of linear discrete-time systems)

Let  $T \in \mathbb{R}^{n \times n}_+$ . Then the following statements are equivalent:

- (i) Spectral small-gain condition: r(T) < 1.
- (ii) Small-gain condition:

 $Tx 
eq x \quad \forall x \in X^+, x \neq 0.$ (iii) There is a point of strict decay: There are  $\lambda \in (0, 1)$  and  $x \in int(X^+)$ :  $Tx \leq \lambda x$ .

Can we extend this result to positive operators in an ordered Banach space  $(X, X^+)$ ?

- If int  $(X^+) = \emptyset$ , the condition (iii) is never satisfied.
- There is an infinite-dimensional version of Perron-Frobenius theorem: Krein-Rutman ٩ theorem.
- However, it requires that the operator T is quasi-compact, which is a rather strong assumption.

3

イロト イ理ト イヨト イヨト

# Example

### Example (Discrete-time system, induced by right shift)

$$x(k+1) = 2Rx(k), \quad k \in \mathbb{Z}_+,$$

•  $X := (\ell_{\infty}, \ell_{\infty}^+).$ 

- $\bullet\,$  The cone  $\ell_\infty^+$  is normal and has non-empty interior.
- *R* is the right shift on *X*, i.e.,

$$R(x_0, x_1, x_2, \ldots) = (0, x_0, x_1, x_2, \ldots).$$

Clearly, the small-gain condition holds:

$$2Rx \geq x$$
 for all  $x \in X^+ \setminus \{0\}$ ,

At the same time,  $\|(2R)^k x\| \to \infty$  as  $k \to \infty$  for each  $x \neq 0$ .

### Moral

| $Tx  \geq x  \forall x \in X^+ \setminus \{$ | 0} | is too weak for | r | (T) | ) < 1 | ۱. |
|----------------------------------------------|----|-----------------|---|-----|-------|----|
|----------------------------------------------|----|-----------------|---|-----|-------|----|

The following statements are clearly equivalent:

• 
$$Tx \geq x$$
  $\forall x \in X^+ \setminus \{0\}$ 

• 
$$Tx - x = (T - id)x \notin X^+ \quad \forall x \in X^+ \setminus \{0\}$$

• dist 
$$((T - id)x, X^+) > 0 \quad \forall x \in X^+ \setminus \{0\}$$

The following statements are clearly equivalent:

• 
$$Tx \not\geq x$$
  $\forall x \in X^+ \setminus \{0\}$ 

• 
$$Tx - x = (T - id)x \notin X^+ \quad \forall x \in X^+ \setminus \{0\}$$

• dist 
$$((T - id)x, X^+) > 0 \quad \forall x \in X^+ \setminus \{0\}$$

### Lack of uniformity

However: It still may happen that

$$\inf_{\|x\|=1, x\in X^+} \operatorname{dist}\left((T-\operatorname{id})x, X^+\right) = 0.$$

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

10/16

Ξ.

# How can we fix $Tx \ge x$ ?

The following statements are clearly equivalent:

- $Tx \not\geq x \quad \forall x \in X^+ \setminus \{0\}$
- $Tx x = (T id)x \notin X^+ \quad \forall x \in X^+ \setminus \{0\}$

• dist 
$$((T - id)x, X^+) > 0$$
  $\forall x \in X^+ \setminus \{0\}$ 

### Lack of uniformity

However: It still may happen that

$$\inf_{\|x\|=1, x\in X^+} \operatorname{dist}\left((T-\operatorname{id})x, X^+\right) = 0.$$

#### Uniform small-gain condition

$$\eta := \inf_{\|x\|=1, x \in X^+} \operatorname{dist} \left( (T - \operatorname{id}) x, X^+ \right) > 0$$

MTNS 2022 10 / 16

= 990

# How can we fix $Tx \ge x$ ?

The following statements are clearly equivalent:

- $Tx \not\geq x \quad \forall x \in X^+ \setminus \{0\}$
- $Tx x = (T id)x \notin X^+ \quad \forall x \in X^+ \setminus \{0\}$
- dist  $((T id)x, X^+) > 0$   $\forall x \in X^+ \setminus \{0\}$

### Lack of uniformity

However: It still may happen that

$$\inf_{\|x\|=1, x\in X^+} \operatorname{dist}\left((T-\operatorname{id})x, X^+\right) = 0.$$

Uniform small-gain condition (equivalent form)

There is  $\eta > 0$  such that

dist 
$$((T - id)x, X^+) \ge \eta ||x||, x \in X^+.$$

# General stability criteria for positive systems

### Uniform small-gain condition

There is a number  $\eta > 0$  such that

$$\operatorname{dist}\left((T-\operatorname{id})X,X^{+}\right)\geq\eta\left\|X\right\|,\quad X\in X^{+}.$$

## Theorem (AM, Glück, Positivity, 2021)

Let  $(X, X^+)$  be an ordered Banach space with generating and normal cone and let  $T \in \mathcal{L}(X)$  be positive. Then

 $r(T) < 1 \quad \Leftrightarrow \quad T \text{ satisfies the uniform small-gain condition.}$ 

### Proof.

See the paper

• Glück, AM. Stability criteria for positive linear discrete-time systems, Positivity, 2021,

where many more equivalent conditions are shown.

Andrii Mironchenko

Revisiting stability of positive linear discrete-time systems

< □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 MTNS 2022

11/16

Э.

### Theorem (AM, Glück, Positivity, 2021)

Let

- $(X, X^+)$  be an ordered Banach space
- X<sup>+</sup> is normal and has non-empty interior
- $T \in \mathcal{L}(X)$  is positive.

The following statements are equivalent:

(i) Spectral small-gain condition: r(T) < 1.

(ii) Exponential stability:  $\exists M > 0, a \in (0, 1)$ :

$$\|T^k x\|_X \leq Ma^k \|x\|_X, \quad x \in X^+, \quad k \in \mathbb{Z}_+.$$

(iii) There is a point of strict decay:  $\exists z \in int(X^+) \text{ and } \lambda \in (0,1)$ :  $Tz \leq \lambda z$ .

э.

(日) (同) (日) (日) (日)

## Theorem (AM, Glück, Positivity, 2021)

Let

- $(X, X^+)$  be an ordered Banach space
- X<sup>+</sup> is normal and has non-empty interior
- $T \in \mathcal{L}(X)$  is positive.

The following statements are equivalent:

(i) Spectral small-gain condition: r(T) < 1.

(ii) Exponential stability:  $\exists M > 0, a \in (0, 1)$ :

$$\|T^k x\|_X \leq Ma^k \|x\|_X, \quad x \in X^+, \quad k \in \mathbb{Z}_+.$$

(iii) There is a point of strict decay:  $\exists z \in int(X^+) and \lambda \in (0, 1)$ :  $Tz \leq \lambda z$ .

## Remark

For applications it is important to have an explicit expression of z in the item (iii).

Andrii Mironchenko

• Pick any  $\lambda \in (a, 1)$ , any  $y \in int(X^+)$ , and consider the vector

$$Z_N := \sum_{k=0}^N rac{\mathcal{T}^k(y)}{\lambda^{k+1}}, \quad N \in \mathbb{N} \cup \{+\infty\}.$$

▲ □ ▶ < @ ▶ < 필 ▶ < 필 ▶</li>
 MTNS 2022

• Pick any  $\lambda \in (a, 1)$ , any  $y \in int(X^+)$ , and consider the vector

$$z_N := \sum_{k=0}^N \frac{T^k(y)}{\lambda^{k+1}}, \quad N \in \mathbb{N} \cup \{+\infty\}.$$

Note that  $z_{+\infty} = \sum_{k=0}^{\infty} \frac{T^k(y)}{\lambda^{k+1}} = (\lambda \operatorname{id} - T)^{-1} y.$ 

• Pick any  $\lambda \in (a, 1)$ , any  $y \in int(X^+)$ , and consider the vector

$$z_N := \sum_{k=0}^N \frac{T^k(y)}{\lambda^{k+1}}, \quad N \in \mathbb{N} \cup \{+\infty\}.$$

Note that  $z_{+\infty} = \sum_{k=0}^{\infty} \frac{T^k(y)}{\lambda^{k+1}} = (\lambda \operatorname{id} - T)^{-1} y.$ 

• As *T* is positive,  $z_N \ge \frac{1}{\lambda}y \ \forall N \in \mathbb{N} \cup \{+\infty\}$ , implying  $z_N \in int(X^+)$ .

▲ □ ▶ ▲ @ ▶ ▲ E ▶ ▲ E ▶ MTNS 2022

• Pick any  $\lambda \in (a, 1)$ , any  $y \in int(X^+)$ , and consider the vector

$$z_N := \sum_{k=0}^N \frac{T^k(y)}{\lambda^{k+1}}, \quad N \in \mathbb{N} \cup \{+\infty\}.$$

Note that  $z_{+\infty} = \sum_{k=0}^{\infty} \frac{T^k(y)}{\lambda^{k+1}} = (\lambda \operatorname{id} - T)^{-1} y.$ 

- As *T* is positive,  $z_N \ge \frac{1}{\lambda}y \ \forall N \in \mathbb{N} \cup \{+\infty\}$ , implying  $z_N \in int(X^+)$ .
- Now decompose T(z<sub>N</sub>) as

$$T(z_N) = (T - \lambda \operatorname{id} + \lambda \operatorname{id})(z_N) = T\Big(\sum_{k=0}^N \frac{T^k(y)}{\lambda^{k+1}}\Big) - \sum_{k=0}^N \frac{T^k(y)}{\lambda^k} + \lambda z_N.$$

• Pick any  $\lambda \in (a, 1)$ , any  $y \in int(X^+)$ , and consider the vector

$$z_N := \sum_{k=0}^N \frac{T^k(y)}{\lambda^{k+1}}, \quad N \in \mathbb{N} \cup \{+\infty\}.$$

Note that  $z_{+\infty} = \sum_{k=0}^{\infty} \frac{T^k(y)}{\lambda^{k+1}} = (\lambda \operatorname{id} - T)^{-1} y.$ 

- As *T* is positive,  $z_N \ge \frac{1}{\lambda}y \ \forall N \in \mathbb{N} \cup \{+\infty\}$ , implying  $z_N \in int(X^+)$ .
- Now decompose T(z<sub>N</sub>) as

$$T(z_N) = (T - \lambda \operatorname{id} + \lambda \operatorname{id})(z_N) = T\left(\sum_{k=0}^N \frac{T^k(y)}{\lambda^{k+1}}\right) - \sum_{k=0}^N \frac{T^k(y)}{\lambda^k} + \lambda z_N.$$

Via linearity, we obtain for large enough N:

$$\begin{split} T(z_N) &= \sum_{k=0}^N T\left(\frac{T^k(y)}{\lambda^{k+1}}\right) - \sum_{k=0}^N \frac{T^k(y)}{\lambda^k} + \lambda z_N = \sum_{k=0}^N \frac{T^{k+1}(y)}{\lambda^{k+1}} - \sum_{k=0}^N \frac{T^k(y)}{\lambda^k} + \lambda z_N \\ &= -y + \frac{T^{N+1}(y)}{\lambda^{N+1}} + \lambda z_N \leq \lambda z_N. \end{split}$$

MTNS 2022 13 / 16

### Theorem (AM, Glück, Positivity, 2021)

Let  $(X, X^+)$  be an ordered Banach space with total cone and let  $T \in \mathcal{L}(X)$  be positive and quasi-compact. Then:

 $r(T) < 1 \quad \Leftrightarrow \quad Tx \not\geq x \quad \forall x \in X^+ \setminus \{0\}.$ 

#### Proof.

Follows by invocation of Krein-Rutman theorem. See many more characterizations for r(T) < 1 in the paper.

# Conclusions

### Characterizations for r(T) < 1 for positive $T \in L(X)$ in $(X, X^+)$ .

• If  $X^+$  is normal and generating, then:

$$r(T) < 1 \quad \Leftrightarrow \quad \exists \eta > 0: \quad \operatorname{dist} \left( (T - \operatorname{id}) x, X^+ \right) \geq \eta \|x\|, \quad x \in X^+.$$

• If  $X^+$  is normal and having interior points, then:

$$r(T) < 1 \quad \Leftrightarrow \quad \exists z \in int(X^+) \text{ and } \lambda \in (0, 1): \quad Tz \leq \lambda z.$$

• If *T* is quasi-compact, and *X*<sup>+</sup> is total, then:

$$r(T) < 1 \quad \Leftrightarrow \quad Tx \not\geq x \quad \forall x \in X^+ \setminus \{0\}.$$

### What I could tell

- Many more characterizations of r(T) < 1 in each of above cases
- In the journal version one can find also a survey showing the position of our results in the state of the art in stability of linear discrete-time systems.

### Main Reference

• Glück, AM. Stability criteria for positive linear discrete-time systems, Positivity, 2021.

### Nonlinear monotone discrete-time systems & Stability of infinite networks

- AM, Noroozi, Kawan, Zamani. ISS small-gain criteria for infinite networks with linear gain functions, SCL, 2021.
- AM, Kawan, Glück. Nonlinear small-gain theorems for input-to-state stability of infinite interconnections, MCSS, 2021.
- Kawan, AM, Zamani. A Lyapunov-based ISS small-gain theorem for infinite networks of nonlinear systems, appeared online in IEEE TAC, 2022.
- Kawan, AM, Swikir, Noroozi, Zamani. A Lyapunov-based small-gain theorem for infinite networks, IEEE TAC, 2021.

### Extensions to linear positive continuous-time systems

• Glück, AM. Stability criteria for positive linear continuous-time systems, to be submitted in 2022.

∃ \$\\$<</p>\$\\$

16/16

イロン イ理 とくほと イヨン

# Outlook & Extensions

### Nonlinear monotone discrete-time systems & Stability of infinite networks

- AM, Noroozi, Kawan, Zamani. ISS small-gain criteria for infinite networks with linear gain functions, SCL, 2021.
- AM, Kawan, Glück. Nonlinear small-gain theorems for input-to-state stability of infinite interconnections, MCSS, 2021.
- Kawan, AM, Zamani. A Lyapunov-based ISS small-gain theorem for infinite networks of nonlinear systems, appeared online in IEEE TAC, 2022.
- Kawan, AM, Swikir, Noroozi, Zamani. A Lyapunov-based small-gain theorem for infinite networks, IEEE TAC, 2021.

#### Extensions to linear positive continuous-time systems

• Glück, AM. Stability criteria for positive linear continuous-time systems, to be submitted in 2022.

# Thank you for Your attention!

イロト イ理ト イヨト イヨト

# **Outlook & Extensions**

#### Nonlinear monotone discrete-time systems & Stability of infinite networks

- AM, Noroozi, Kawan, Zamani. ISS small-gain criteria for infinite networks with linear gain functions, SCL, 2021.
- AM, Kawan, Glück. Nonlinear small-gain theorems for input-to-state stability of infinite interconnections, MCSS, 2021.
- Kawan, AM, Zamani. A Lyapunov-based ISS small-gain theorem for infinite networks of nonlinear systems, appeared online in IEEE TAC, 2022.
- Kawan, AM, Swikir, Noroozi, Zamani. A Lyapunov-based small-gain theorem for infinite networks, IEEE TAC, 2021.

#### Extensions to linear positive continuous-time systems

Glück, AM. Stability criteria for positive linear continuous-time systems, to be submitted in 2022.

### Do not miss my talk

'Small-gain conditions for robust stability of nonlinear infinite networks' Tuesday, 11:20–11:55, session 'Dissipativity Theory II: Stability Analysis'.

э.

16/16

イロト イヨト イヨト イヨト